[f1e01c]: / tests / test_models / test_backbones / test_swin.py

Download this file

100 lines (82 with data), 3.2 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import pytest
import torch
from mmseg.models.backbones.swin import SwinBlock, SwinTransformer
def test_swin_block():
# test SwinBlock structure and forward
block = SwinBlock(embed_dims=32, num_heads=4, feedforward_channels=128)
assert block.ffn.embed_dims == 32
assert block.attn.w_msa.num_heads == 4
assert block.ffn.feedforward_channels == 128
x = torch.randn(1, 56 * 56, 32)
x_out = block(x, (56, 56))
assert x_out.shape == torch.Size([1, 56 * 56, 32])
# Test BasicBlock with checkpoint forward
block = SwinBlock(
embed_dims=64, num_heads=4, feedforward_channels=256, with_cp=True)
assert block.with_cp
x = torch.randn(1, 56 * 56, 64)
x_out = block(x, (56, 56))
assert x_out.shape == torch.Size([1, 56 * 56, 64])
def test_swin_transformer():
"""Test Swin Transformer backbone."""
with pytest.raises(TypeError):
# Pretrained arg must be str or None.
SwinTransformer(pretrained=123)
with pytest.raises(AssertionError):
# Because swin uses non-overlapping patch embed, so the stride of patch
# embed must be equal to patch size.
SwinTransformer(strides=(2, 2, 2, 2), patch_size=4)
# test pretrained image size
with pytest.raises(AssertionError):
SwinTransformer(pretrain_img_size=(112, 112, 112))
# Test absolute position embedding
temp = torch.randn((1, 3, 112, 112))
model = SwinTransformer(pretrain_img_size=112, use_abs_pos_embed=True)
model.init_weights()
model(temp)
# Test patch norm
model = SwinTransformer(patch_norm=False)
model(temp)
# Test normal inference
temp = torch.randn((1, 3, 256, 256))
model = SwinTransformer()
outs = model(temp)
assert outs[0].shape == (1, 96, 64, 64)
assert outs[1].shape == (1, 192, 32, 32)
assert outs[2].shape == (1, 384, 16, 16)
assert outs[3].shape == (1, 768, 8, 8)
# Test abnormal inference size
temp = torch.randn((1, 3, 255, 255))
model = SwinTransformer()
outs = model(temp)
assert outs[0].shape == (1, 96, 64, 64)
assert outs[1].shape == (1, 192, 32, 32)
assert outs[2].shape == (1, 384, 16, 16)
assert outs[3].shape == (1, 768, 8, 8)
# Test abnormal inference size
temp = torch.randn((1, 3, 112, 137))
model = SwinTransformer()
outs = model(temp)
assert outs[0].shape == (1, 96, 28, 35)
assert outs[1].shape == (1, 192, 14, 18)
assert outs[2].shape == (1, 384, 7, 9)
assert outs[3].shape == (1, 768, 4, 5)
# Test frozen
model = SwinTransformer(frozen_stages=4)
model.train()
for p in model.parameters():
assert not p.requires_grad
# Test absolute position embedding frozen
model = SwinTransformer(frozen_stages=4, use_abs_pos_embed=True)
model.train()
for p in model.parameters():
assert not p.requires_grad
# Test Swin with checkpoint forward
temp = torch.randn((1, 3, 56, 56))
model = SwinTransformer(with_cp=True)
for m in model.modules():
if isinstance(m, SwinBlock):
assert m.with_cp
model.init_weights()
model.train()
model(temp)