[f1e01c]: / mmseg / utils / layer_decay_optimizer_constructor.py

Download this file

123 lines (105 with data), 4.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import json
from mmcv.runner import OPTIMIZER_BUILDERS, DefaultOptimizerConstructor
from mmcv.runner import get_dist_info
def get_num_layer_layer_wise(var_name, num_max_layer=12):
if var_name in ("backbone.cls_token", "backbone.mask_token", "backbone.pos_embed"):
return 0
elif var_name.startswith("backbone.downsample_layers"):
stage_id = int(var_name.split('.')[2])
if stage_id == 0:
layer_id = 0
elif stage_id == 1:
layer_id = 2
elif stage_id == 2:
layer_id = 3
elif stage_id == 3:
layer_id = num_max_layer
return layer_id
elif var_name.startswith("backbone.stages"):
stage_id = int(var_name.split('.')[2])
block_id = int(var_name.split('.')[3])
if stage_id == 0:
layer_id = 1
elif stage_id == 1:
layer_id = 2
elif stage_id == 2:
layer_id = 3 + block_id // 3
elif stage_id == 3:
layer_id = num_max_layer
return layer_id
else:
return num_max_layer + 1
def get_num_layer_stage_wise(var_name, num_max_layer):
if var_name in ("backbone.cls_token", "backbone.mask_token", "backbone.pos_embed"):
return 0
elif var_name.startswith("backbone.downsample_layers"):
return 0
elif var_name.startswith("backbone.stages"):
stage_id = int(var_name.split('.')[2])
return stage_id + 1
else:
return num_max_layer - 1
@OPTIMIZER_BUILDERS.register_module()
class LearningRateDecayOptimizerConstructor(DefaultOptimizerConstructor):
def add_params(self, params, module, prefix='', is_dcn_module=None):
"""Add all parameters of module to the params list.
The parameters of the given module will be added to the list of param
groups, with specific rules defined by paramwise_cfg.
Args:
params (list[dict]): A list of param groups, it will be modified
in place.
module (nn.Module): The module to be added.
prefix (str): The prefix of the module
is_dcn_module (int|float|None): If the current module is a
submodule of DCN, `is_dcn_module` will be passed to
control conv_offset layer's learning rate. Defaults to None.
"""
parameter_groups = {}
print(self.paramwise_cfg)
num_layers = self.paramwise_cfg.get('num_layers') + 2
decay_rate = self.paramwise_cfg.get('decay_rate')
decay_type = self.paramwise_cfg.get('decay_type', "layer_wise")
print("Build LearningRateDecayOptimizerConstructor %s %f - %d" % (decay_type, decay_rate, num_layers))
weight_decay = self.base_wd
for name, param in module.named_parameters():
if not param.requires_grad:
continue # frozen weights
if len(param.shape) == 1 or name.endswith(".bias") or name in ('pos_embed', 'cls_token'):
group_name = "no_decay"
this_weight_decay = 0.
else:
group_name = "decay"
this_weight_decay = weight_decay
if decay_type == "layer_wise":
layer_id = get_num_layer_layer_wise(name, self.paramwise_cfg.get('num_layers'))
elif decay_type == "stage_wise":
layer_id = get_num_layer_stage_wise(name, num_layers)
group_name = "layer_%d_%s" % (layer_id, group_name)
if group_name not in parameter_groups:
scale = decay_rate ** (num_layers - layer_id - 1)
parameter_groups[group_name] = {
"weight_decay": this_weight_decay,
"params": [],
"param_names": [],
"lr_scale": scale,
"group_name": group_name,
"lr": scale * self.base_lr,
}
parameter_groups[group_name]["params"].append(param)
parameter_groups[group_name]["param_names"].append(name)
rank, _ = get_dist_info()
if rank == 0:
to_display = {}
for key in parameter_groups:
to_display[key] = {
"param_names": parameter_groups[key]["param_names"],
"lr_scale": parameter_groups[key]["lr_scale"],
"lr": parameter_groups[key]["lr"],
"weight_decay": parameter_groups[key]["weight_decay"],
}
print("Param groups = %s" % json.dumps(to_display, indent=2))
params.extend(parameter_groups.values())