[f1e01c]: / mmseg / datasets / cityscapes.py

Download this file

215 lines (175 with data), 8.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
import mmcv
import numpy as np
from mmcv.utils import print_log
from PIL import Image
from .builder import DATASETS
from .custom import CustomDataset
@DATASETS.register_module()
class CityscapesDataset(CustomDataset):
"""Cityscapes dataset.
The ``img_suffix`` is fixed to '_leftImg8bit.png' and ``seg_map_suffix`` is
fixed to '_gtFine_labelTrainIds.png' for Cityscapes dataset.
"""
CLASSES = ('road', 'sidewalk', 'building', 'wall', 'fence', 'pole',
'traffic light', 'traffic sign', 'vegetation', 'terrain', 'sky',
'person', 'rider', 'car', 'truck', 'bus', 'train', 'motorcycle',
'bicycle')
PALETTE = [[128, 64, 128], [244, 35, 232], [70, 70, 70], [102, 102, 156],
[190, 153, 153], [153, 153, 153], [250, 170, 30], [220, 220, 0],
[107, 142, 35], [152, 251, 152], [70, 130, 180], [220, 20, 60],
[255, 0, 0], [0, 0, 142], [0, 0, 70], [0, 60, 100],
[0, 80, 100], [0, 0, 230], [119, 11, 32]]
def __init__(self,
img_suffix='_leftImg8bit.png',
seg_map_suffix='_gtFine_labelTrainIds.png',
**kwargs):
super(CityscapesDataset, self).__init__(
img_suffix=img_suffix, seg_map_suffix=seg_map_suffix, **kwargs)
@staticmethod
def _convert_to_label_id(result):
"""Convert trainId to id for cityscapes."""
if isinstance(result, str):
result = np.load(result)
import cityscapesscripts.helpers.labels as CSLabels
result_copy = result.copy()
for trainId, label in CSLabels.trainId2label.items():
result_copy[result == trainId] = label.id
return result_copy
def results2img(self, results, imgfile_prefix, to_label_id, indices=None):
"""Write the segmentation results to images.
Args:
results (list[ndarray]): Testing results of the
dataset.
imgfile_prefix (str): The filename prefix of the png files.
If the prefix is "somepath/xxx",
the png files will be named "somepath/xxx.png".
to_label_id (bool): whether convert output to label_id for
submission.
indices (list[int], optional): Indices of input results,
if not set, all the indices of the dataset will be used.
Default: None.
Returns:
list[str: str]: result txt files which contains corresponding
semantic segmentation images.
"""
if indices is None:
indices = list(range(len(self)))
mmcv.mkdir_or_exist(imgfile_prefix)
result_files = []
for result, idx in zip(results, indices):
if to_label_id:
result = self._convert_to_label_id(result)
filename = self.img_infos[idx]['filename']
basename = osp.splitext(osp.basename(filename))[0]
png_filename = osp.join(imgfile_prefix, f'{basename}.png')
output = Image.fromarray(result.astype(np.uint8)).convert('P')
import cityscapesscripts.helpers.labels as CSLabels
palette = np.zeros((len(CSLabels.id2label), 3), dtype=np.uint8)
for label_id, label in CSLabels.id2label.items():
palette[label_id] = label.color
output.putpalette(palette)
output.save(png_filename)
result_files.append(png_filename)
return result_files
def format_results(self,
results,
imgfile_prefix,
to_label_id=True,
indices=None):
"""Format the results into dir (standard format for Cityscapes
evaluation).
Args:
results (list): Testing results of the dataset.
imgfile_prefix (str): The prefix of images files. It
includes the file path and the prefix of filename, e.g.,
"a/b/prefix".
to_label_id (bool): whether convert output to label_id for
submission. Default: False
indices (list[int], optional): Indices of input results,
if not set, all the indices of the dataset will be used.
Default: None.
Returns:
tuple: (result_files, tmp_dir), result_files is a list containing
the image paths, tmp_dir is the temporal directory created
for saving json/png files when img_prefix is not specified.
"""
if indices is None:
indices = list(range(len(self)))
assert isinstance(results, list), 'results must be a list.'
assert isinstance(indices, list), 'indices must be a list.'
result_files = self.results2img(results, imgfile_prefix, to_label_id,
indices)
return result_files
def evaluate(self,
results,
metric='mIoU',
logger=None,
imgfile_prefix=None):
"""Evaluation in Cityscapes/default protocol.
Args:
results (list): Testing results of the dataset.
metric (str | list[str]): Metrics to be evaluated.
logger (logging.Logger | None | str): Logger used for printing
related information during evaluation. Default: None.
imgfile_prefix (str | None): The prefix of output image file,
for cityscapes evaluation only. It includes the file path and
the prefix of filename, e.g., "a/b/prefix".
If results are evaluated with cityscapes protocol, it would be
the prefix of output png files. The output files would be
png images under folder "a/b/prefix/xxx.png", where "xxx" is
the image name of cityscapes. If not specified, a temp file
will be created for evaluation.
Default: None.
Returns:
dict[str, float]: Cityscapes/default metrics.
"""
eval_results = dict()
metrics = metric.copy() if isinstance(metric, list) else [metric]
if 'cityscapes' in metrics:
eval_results.update(
self._evaluate_cityscapes(results, logger, imgfile_prefix))
metrics.remove('cityscapes')
if len(metrics) > 0:
eval_results.update(
super(CityscapesDataset,
self).evaluate(results, metrics, logger))
return eval_results
def _evaluate_cityscapes(self, results, logger, imgfile_prefix):
"""Evaluation in Cityscapes protocol.
Args:
results (list): Testing results of the dataset.
logger (logging.Logger | str | None): Logger used for printing
related information during evaluation. Default: None.
imgfile_prefix (str | None): The prefix of output image file
Returns:
dict[str: float]: Cityscapes evaluation results.
"""
try:
import cityscapesscripts.evaluation.evalPixelLevelSemanticLabeling as CSEval # noqa
except ImportError:
raise ImportError('Please run "pip install cityscapesscripts" to '
'install cityscapesscripts first.')
msg = 'Evaluating in Cityscapes style'
if logger is None:
msg = '\n' + msg
print_log(msg, logger=logger)
result_dir = imgfile_prefix
eval_results = dict()
print_log(f'Evaluating results under {result_dir} ...', logger=logger)
CSEval.args.evalInstLevelScore = True
CSEval.args.predictionPath = osp.abspath(result_dir)
CSEval.args.evalPixelAccuracy = True
CSEval.args.JSONOutput = False
seg_map_list = []
pred_list = []
# when evaluating with official cityscapesscripts,
# **_gtFine_labelIds.png is used
for seg_map in mmcv.scandir(
self.ann_dir, 'gtFine_labelIds.png', recursive=True):
seg_map_list.append(osp.join(self.ann_dir, seg_map))
pred_list.append(CSEval.getPrediction(CSEval.args, seg_map))
eval_results.update(
CSEval.evaluateImgLists(pred_list, seg_map_list, CSEval.args))
return eval_results