[f1e01c]: / data_preprocess.py

Download this file

140 lines (123 with data), 6.3 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import os
import numpy as np
import pandas as pd
import cv2
from PIL import Image
import glob
from tqdm.auto import tqdm
import albumentations as A
def rle_decode(mask_rle, shape):
s = np.array(mask_rle.split(), dtype=int)
starts, lengths = s[0::2] - 1, s[1::2]
ends = starts + lengths
h, w = shape
img = np.zeros((h * w,), dtype = np.uint8)
for lo, hi in zip(starts, ends):
img[lo : hi] = 1
return img.reshape(shape)
def rle_encode(img):
pixels = img.flatten()
pixels = np.concatenate([[0], pixels, [0]])
runs = np.where(pixels[1:] != pixels[:-1])[0] + 1
runs[1::2] -= runs[::2]
return ' '.join(str(x) for x in runs)
os.chdir("./data/tract")
df_train = pd.read_csv("./train.csv")
df_train = df_train.sort_values(["id", "class"]).reset_index(drop = True)
df_train["patient"] = df_train.id.apply(lambda x: x.split("_")[0])
df_train["days"] = df_train.id.apply(lambda x: "_".join(x.split("_")[:2]))
num_slices = len(np.unique(df_train.id))
num_empty_slices = df_train.groupby("id").apply(lambda x: x.segmentation.isna().all()).sum()
num_patients = len(np.unique(df_train.patient))
num_days = len(np.unique(df_train.days))
print({
"#slices:": num_slices,
"#empty slices:": num_empty_slices,
"#patients": num_patients,
"#days": num_days
})
all_image_files = sorted(glob.glob("./train/*/*/scans/*.png"), key = lambda x: x.split("/")[3] + "_" + x.split("/")[5])
size_x = [int(os.path.basename(_)[:-4].split("_")[-4]) for _ in all_image_files]
size_y = [int(os.path.basename(_)[:-4].split("_")[-3]) for _ in all_image_files]
spacing_x = [float(os.path.basename(_)[:-4].split("_")[-2]) for _ in all_image_files]
spacing_y = [float(os.path.basename(_)[:-4].split("_")[-1]) for _ in all_image_files]
df_train["image_files"] = np.repeat(all_image_files, 3)
df_train["spacing_x"] = np.repeat(spacing_x, 3)
df_train["spacing_y"] = np.repeat(spacing_y, 3)
df_train["size_x"] = np.repeat(size_x, 3)
df_train["size_y"] = np.repeat(size_y, 3)
df_train["slice"] = np.repeat([int(os.path.basename(_)[:-4].split("_")[-5]) for _ in all_image_files], 3)
df_train
os.system("mkdir -p ./mmseg_train/images ./mmseg_train/labels")
for day, group in tqdm(df_train.groupby("days")):
patient = group.patient.iloc[0]
imgs = []
msks = []
for file_name in tqdm(group.image_files.unique(), leave = False):
img = cv2.imread(file_name, cv2.IMREAD_ANYDEPTH)
segms = group.loc[group.image_files == file_name]
masks = {}
for segm, label in zip(segms.segmentation, segms["class"]):
if not pd.isna(segm):
mask = rle_decode(segm, img.shape[:2])
masks[label] = mask
else:
masks[label] = np.zeros(img.shape[:2], dtype = np.uint8)
masks = np.stack([masks[k] for k in sorted(masks)], -1)
imgs.append(img)
msks.append(masks)
imgs = np.stack(imgs, 0)
msks = np.stack(msks, 0)
for i in range(msks.shape[0]):
img = imgs[[
max(0, i - 2),
i,
min(imgs.shape[0] - 1, i + 2)
]].transpose(1, 2, 0)
msk = msks[i]
new_image_name = f"{day}_{i}.png"
cv2.imwrite(f"./mmseg_train/images/{new_image_name}", img)
cv2.imwrite(f"./mmseg_train/labels/{new_image_name}", msk)
os.system("mkdir -p ./mmseg_train/splits")
all_image_files = glob.glob("./mmseg_train/images/*")
patients = [os.path.basename(_).split("_")[0] for _ in all_image_files]
from sklearn.model_selection import GroupKFold
split = list(GroupKFold(5).split(patients, groups = patients))
for fold, (train_idx, valid_idx) in enumerate(split):
with open(f"./mmseg_train/splits/fold_{fold}.txt", "w") as f:
for idx in train_idx:
f.write(os.path.basename(all_image_files[idx])[:-4] + "\n")
with open(f"./mmseg_train/splits/holdout_{fold}.txt", "w") as f:
for idx in valid_idx:
f.write(os.path.basename(all_image_files[idx])[:-4] + "\n")
os.system("mkdir -p ./mmseg_train/splits_notail ./mmseg_train/splits_noanno ./mmseg_train/splits_case")
tails = set()
noannos = set()
faults = set()
for day, group in df_train.groupby("days"):
end_slice = group.slice.iloc[np.where(~group.segmentation.isna())[0][-1]]
tail_slice = np.arange(end_slice + 1, end_slice + 6)
tail_group = group[group.slice.isin(tail_slice)].drop_duplicates(["days", "image_files"])
noanno_group = group[group.segmentation.isna()].drop_duplicates(["days", "image_files"])
tails.update([os.path.basename(row.image_files)[:-4].replace("slice", row.days) for i, row in tail_group.iterrows()])
noannos.update([os.path.basename(row.image_files)[:-4].replace("slice", row.days) for i, row in noanno_group.iterrows()])
if day in ['case7_day0', 'case81_day30']:
faults.update([os.path.basename(row.image_files)[:-4].replace("slice", row.days) for i, row in group.iterrows()])
for f in range(5):
split = pd.read_csv(f"./mmseg_train/splits/fold_{f}.txt", header = None)
x = list(set(split.iloc[:,0].tolist()) - tails)
pd.DataFrame(x).to_csv(f"./mmseg_train/splits_notail/fold_{f}.txt", index = False, header = False)
x = list(set(split.iloc[:,0].tolist()) - noannos)
pd.DataFrame(x).to_csv(f"./mmseg_train/splits_noanno/fold_{f}.txt", index = False, header = False)
x = list(set(split.iloc[:,0].tolist()) - faults)
pd.DataFrame(x).to_csv(f"./mmseg_train/splits_case/fold_{f}.txt", index = False, header = False)
split = pd.read_csv(f"./mmseg_train/splits/holdout_{f}.txt", header = None)
x = list(set(split.iloc[:,0].tolist()) - tails)
pd.DataFrame(x).to_csv(f"./mmseg_train/splits_notail/holdout_{f}.txt", index = False, header = False)
x = list(set(split.iloc[:,0].tolist()) - noannos)
pd.DataFrame(x).to_csv(f"./mmseg_train/splits_noanno/holdout_{f}.txt", index = False, header = False)
x = list(set(split.iloc[:,0].tolist()) - faults)
pd.DataFrame(x).to_csv(f"./mmseg_train/splits_case/holdout_{f}.txt", index = False, header = False)
for d in ["", "_notail", "_noanno", "_case"]:
os.system(f"cat ./mmseg_train/splits{d}/holdout_{f}.txt > ./mmseg_train/splits{d}/fold_all.txt")
os.system(f"cat ./mmseg_train/splits{d}/fold_{f}.txt >> ./mmseg_train/splits{d}/fold_all.txt")