[f1e01c]: / configs / sem_fpn / sem_fpn.yml

Download this file

105 lines (104 with data), 3.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
Collections:
- Name: sem_fpn
Metadata:
Training Data:
- Cityscapes
- ADE20K
Paper:
URL: https://arxiv.org/abs/1901.02446
Title: Panoptic Feature Pyramid Networks
README: configs/sem_fpn/README.md
Code:
URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/fpn_head.py#L12
Version: v0.17.0
Converted From:
Code: https://github.com/facebookresearch/detectron2
Models:
- Name: fpn_r50_512x1024_80k_cityscapes
In Collection: sem_fpn
Metadata:
backbone: R-50
crop size: (512,1024)
lr schd: 80000
inference time (ms/im):
- value: 73.86
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,1024)
Training Memory (GB): 2.8
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 74.52
mIoU(ms+flip): 76.08
Config: configs/sem_fpn/fpn_r50_512x1024_80k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r50_512x1024_80k_cityscapes/fpn_r50_512x1024_80k_cityscapes_20200717_021437-94018a0d.pth
- Name: fpn_r101_512x1024_80k_cityscapes
In Collection: sem_fpn
Metadata:
backbone: R-101
crop size: (512,1024)
lr schd: 80000
inference time (ms/im):
- value: 97.18
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,1024)
Training Memory (GB): 3.9
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 75.8
mIoU(ms+flip): 77.4
Config: configs/sem_fpn/fpn_r101_512x1024_80k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r101_512x1024_80k_cityscapes/fpn_r101_512x1024_80k_cityscapes_20200717_012416-c5800d4c.pth
- Name: fpn_r50_512x512_160k_ade20k
In Collection: sem_fpn
Metadata:
backbone: R-50
crop size: (512,512)
lr schd: 160000
inference time (ms/im):
- value: 17.93
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 4.9
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 37.49
mIoU(ms+flip): 39.09
Config: configs/sem_fpn/fpn_r50_512x512_160k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r50_512x512_160k_ade20k/fpn_r50_512x512_160k_ade20k_20200718_131734-5b5a6ab9.pth
- Name: fpn_r101_512x512_160k_ade20k
In Collection: sem_fpn
Metadata:
backbone: R-101
crop size: (512,512)
lr schd: 160000
inference time (ms/im):
- value: 24.64
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 5.9
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 39.35
mIoU(ms+flip): 40.72
Config: configs/sem_fpn/fpn_r101_512x512_160k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r101_512x512_160k_ade20k/fpn_r101_512x512_160k_ade20k_20200718_131734-306b5004.pth