[f1e01c]: / tools / convert_datasets / drive.py

Download this file

114 lines (96 with data), 4.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os
import os.path as osp
import tempfile
import zipfile
import cv2
import mmcv
def parse_args():
parser = argparse.ArgumentParser(
description='Convert DRIVE dataset to mmsegmentation format')
parser.add_argument(
'training_path', help='the training part of DRIVE dataset')
parser.add_argument(
'testing_path', help='the testing part of DRIVE dataset')
parser.add_argument('--tmp_dir', help='path of the temporary directory')
parser.add_argument('-o', '--out_dir', help='output path')
args = parser.parse_args()
return args
def main():
args = parse_args()
training_path = args.training_path
testing_path = args.testing_path
if args.out_dir is None:
out_dir = osp.join('data', 'DRIVE')
else:
out_dir = args.out_dir
print('Making directories...')
mmcv.mkdir_or_exist(out_dir)
mmcv.mkdir_or_exist(osp.join(out_dir, 'images'))
mmcv.mkdir_or_exist(osp.join(out_dir, 'images', 'training'))
mmcv.mkdir_or_exist(osp.join(out_dir, 'images', 'validation'))
mmcv.mkdir_or_exist(osp.join(out_dir, 'annotations'))
mmcv.mkdir_or_exist(osp.join(out_dir, 'annotations', 'training'))
mmcv.mkdir_or_exist(osp.join(out_dir, 'annotations', 'validation'))
with tempfile.TemporaryDirectory(dir=args.tmp_dir) as tmp_dir:
print('Extracting training.zip...')
zip_file = zipfile.ZipFile(training_path)
zip_file.extractall(tmp_dir)
print('Generating training dataset...')
now_dir = osp.join(tmp_dir, 'training', 'images')
for img_name in os.listdir(now_dir):
img = mmcv.imread(osp.join(now_dir, img_name))
mmcv.imwrite(
img,
osp.join(
out_dir, 'images', 'training',
osp.splitext(img_name)[0].replace('_training', '') +
'.png'))
now_dir = osp.join(tmp_dir, 'training', '1st_manual')
for img_name in os.listdir(now_dir):
cap = cv2.VideoCapture(osp.join(now_dir, img_name))
ret, img = cap.read()
mmcv.imwrite(
img[:, :, 0] // 128,
osp.join(out_dir, 'annotations', 'training',
osp.splitext(img_name)[0] + '.png'))
print('Extracting test.zip...')
zip_file = zipfile.ZipFile(testing_path)
zip_file.extractall(tmp_dir)
print('Generating validation dataset...')
now_dir = osp.join(tmp_dir, 'test', 'images')
for img_name in os.listdir(now_dir):
img = mmcv.imread(osp.join(now_dir, img_name))
mmcv.imwrite(
img,
osp.join(
out_dir, 'images', 'validation',
osp.splitext(img_name)[0].replace('_test', '') + '.png'))
now_dir = osp.join(tmp_dir, 'test', '1st_manual')
if osp.exists(now_dir):
for img_name in os.listdir(now_dir):
cap = cv2.VideoCapture(osp.join(now_dir, img_name))
ret, img = cap.read()
# The annotation img should be divided by 128, because some of
# the annotation imgs are not standard. We should set a
# threshold to convert the nonstandard annotation imgs. The
# value divided by 128 is equivalent to '1 if value >= 128
# else 0'
mmcv.imwrite(
img[:, :, 0] // 128,
osp.join(out_dir, 'annotations', 'validation',
osp.splitext(img_name)[0] + '.png'))
now_dir = osp.join(tmp_dir, 'test', '2nd_manual')
if osp.exists(now_dir):
for img_name in os.listdir(now_dir):
cap = cv2.VideoCapture(osp.join(now_dir, img_name))
ret, img = cap.read()
mmcv.imwrite(
img[:, :, 0] // 128,
osp.join(out_dir, 'annotations', 'validation',
osp.splitext(img_name)[0] + '.png'))
print('Removing the temporary files...')
print('Done!')
if __name__ == '__main__':
main()