[f1e01c]: / tests / test_models / test_backbones / test_twins.py

Download this file

171 lines (142 with data), 5.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import pytest
import torch
from mmseg.models.backbones.twins import (PCPVT, SVT,
ConditionalPositionEncoding,
LocallyGroupedSelfAttention)
def test_pcpvt():
# Test normal input
H, W = (224, 224)
temp = torch.randn((1, 3, H, W))
model = PCPVT(
embed_dims=[32, 64, 160, 256],
num_heads=[1, 2, 5, 8],
mlp_ratios=[8, 8, 4, 4],
qkv_bias=True,
depths=[3, 4, 6, 3],
sr_ratios=[8, 4, 2, 1],
norm_after_stage=False)
model.init_weights()
outs = model(temp)
assert outs[0].shape == (1, 32, H // 4, W // 4)
assert outs[1].shape == (1, 64, H // 8, W // 8)
assert outs[2].shape == (1, 160, H // 16, W // 16)
assert outs[3].shape == (1, 256, H // 32, W // 32)
def test_svt():
# Test normal input
H, W = (224, 224)
temp = torch.randn((1, 3, H, W))
model = SVT(
embed_dims=[32, 64, 128],
num_heads=[1, 2, 4],
mlp_ratios=[4, 4, 4],
qkv_bias=False,
depths=[4, 4, 4],
windiow_sizes=[7, 7, 7],
norm_after_stage=True)
model.init_weights()
outs = model(temp)
assert outs[0].shape == (1, 32, H // 4, W // 4)
assert outs[1].shape == (1, 64, H // 8, W // 8)
assert outs[2].shape == (1, 128, H // 16, W // 16)
def test_svt_init():
path = 'PATH_THAT_DO_NOT_EXIST'
# Test all combinations of pretrained and init_cfg
# pretrained=None, init_cfg=None
model = SVT(pretrained=None, init_cfg=None)
assert model.init_cfg is None
model.init_weights()
# pretrained=None
# init_cfg loads pretrain from an non-existent file
model = SVT(
pretrained=None, init_cfg=dict(type='Pretrained', checkpoint=path))
assert model.init_cfg == dict(type='Pretrained', checkpoint=path)
# Test loading a checkpoint from an non-existent file
with pytest.raises(OSError):
model.init_weights()
# pretrained=None
# init_cfg=123, whose type is unsupported
model = SVT(pretrained=None, init_cfg=123)
with pytest.raises(TypeError):
model.init_weights()
# pretrained loads pretrain from an non-existent file
# init_cfg=None
model = SVT(pretrained=path, init_cfg=None)
assert model.init_cfg == dict(type='Pretrained', checkpoint=path)
# Test loading a checkpoint from an non-existent file
with pytest.raises(OSError):
model.init_weights()
# pretrained loads pretrain from an non-existent file
# init_cfg loads pretrain from an non-existent file
with pytest.raises(AssertionError):
model = SVT(
pretrained=path, init_cfg=dict(type='Pretrained', checkpoint=path))
with pytest.raises(AssertionError):
model = SVT(pretrained=path, init_cfg=123)
# pretrain=123, whose type is unsupported
# init_cfg=None
with pytest.raises(TypeError):
model = SVT(pretrained=123, init_cfg=None)
# pretrain=123, whose type is unsupported
# init_cfg loads pretrain from an non-existent file
with pytest.raises(AssertionError):
model = SVT(
pretrained=123, init_cfg=dict(type='Pretrained', checkpoint=path))
# pretrain=123, whose type is unsupported
# init_cfg=123, whose type is unsupported
with pytest.raises(AssertionError):
model = SVT(pretrained=123, init_cfg=123)
def test_pcpvt_init():
path = 'PATH_THAT_DO_NOT_EXIST'
# Test all combinations of pretrained and init_cfg
# pretrained=None, init_cfg=None
model = PCPVT(pretrained=None, init_cfg=None)
assert model.init_cfg is None
model.init_weights()
# pretrained=None
# init_cfg loads pretrain from an non-existent file
model = PCPVT(
pretrained=None, init_cfg=dict(type='Pretrained', checkpoint=path))
assert model.init_cfg == dict(type='Pretrained', checkpoint=path)
# Test loading a checkpoint from an non-existent file
with pytest.raises(OSError):
model.init_weights()
# pretrained=None
# init_cfg=123, whose type is unsupported
model = PCPVT(pretrained=None, init_cfg=123)
with pytest.raises(TypeError):
model.init_weights()
# pretrained loads pretrain from an non-existent file
# init_cfg=None
model = PCPVT(pretrained=path, init_cfg=None)
assert model.init_cfg == dict(type='Pretrained', checkpoint=path)
# Test loading a checkpoint from an non-existent file
with pytest.raises(OSError):
model.init_weights()
# pretrained loads pretrain from an non-existent file
# init_cfg loads pretrain from an non-existent file
with pytest.raises(AssertionError):
model = PCPVT(
pretrained=path, init_cfg=dict(type='Pretrained', checkpoint=path))
with pytest.raises(AssertionError):
model = PCPVT(pretrained=path, init_cfg=123)
# pretrain=123, whose type is unsupported
# init_cfg=None
with pytest.raises(TypeError):
model = PCPVT(pretrained=123, init_cfg=None)
# pretrain=123, whose type is unsupported
# init_cfg loads pretrain from an non-existent file
with pytest.raises(AssertionError):
model = PCPVT(
pretrained=123, init_cfg=dict(type='Pretrained', checkpoint=path))
# pretrain=123, whose type is unsupported
# init_cfg=123, whose type is unsupported
with pytest.raises(AssertionError):
model = PCPVT(pretrained=123, init_cfg=123)
def test_locallygrouped_self_attention_module():
LSA = LocallyGroupedSelfAttention(embed_dims=32, window_size=3)
outs = LSA(torch.randn(1, 3136, 32), (56, 56))
assert outs.shape == torch.Size([1, 3136, 32])
def test_conditional_position_encoding_module():
CPE = ConditionalPositionEncoding(in_channels=32, embed_dims=32, stride=2)
outs = CPE(torch.randn(1, 3136, 32), (56, 56))
assert outs.shape == torch.Size([1, 784, 32])