[4e96d3]: / work_configs / tract / tract_baseline.py

Download this file

132 lines (125 with data), 4.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
num_classes = 3
# model settings
norm_cfg = dict(type='SyncBN', requires_grad=True)
loss = [
dict(type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
]
model = dict(
type='SMPUnet',
backbone=dict(
type='timm-efficientnet-b0',
pretrained="imagenet"
),
decode_head=dict(
num_classes=num_classes,
align_corners=False,
loss_decode=loss
),
# model training and testing settings
train_cfg=dict(),
test_cfg=dict(mode="whole", multi_label=True))
# dataset settings
dataset_type = 'CustomDataset'
data_root = 'data/tract/'
classes = ['large_bowel', 'small_bowel', 'stomach']
palette = [[0,0,0], [128,128,128], [255,255,255]]
img_norm_cfg = dict(mean=[0,0,0], std=[1,1,1], to_rgb=True)
size = 256
albu_train_transforms = [
dict(type='RandomBrightnessContrast', p=0.5),
]
train_pipeline = [
dict(type='LoadImageFromFile', to_float32=True, color_type='unchanged', max_value='max'),
dict(type='LoadAnnotations'),
dict(type='Resize', img_scale=(size, size), keep_ratio=True),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='Albu', transforms=albu_train_transforms),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size=(size, size), pad_val=0, seg_pad_val=255),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_semantic_seg']),
]
test_pipeline = [
dict(type='LoadImageFromFile', to_float32=True, color_type='unchanged', max_value='max'),
dict(
type='MultiScaleFlipAug',
img_scale=(size, size),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size=(size, size), pad_val=0, seg_pad_val=255),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
samples_per_gpu=16,
workers_per_gpu=4,
train=dict(
type=dataset_type,
multi_label=True,
data_root=data_root,
img_dir='mmseg_train/images',
ann_dir='mmseg_train/labels',
img_suffix=".png",
seg_map_suffix='.png',
split="mmseg_train/splits/fold_0.txt",
classes=classes,
palette=palette,
pipeline=train_pipeline),
val=dict(
type=dataset_type,
multi_label=True,
data_root=data_root,
img_dir='mmseg_train/images',
ann_dir='mmseg_train/labels',
img_suffix=".png",
seg_map_suffix='.png',
split="mmseg_train/splits/holdout_0.txt",
classes=classes,
palette=palette,
pipeline=test_pipeline),
test=dict(
type=dataset_type,
multi_label=True,
data_root=data_root,
test_mode=True,
img_dir='test/images',
ann_dir='test/labels',
img_suffix=".jpg",
seg_map_suffix='.png',
classes=classes,
palette=palette,
pipeline=test_pipeline))
# yapf:disable
log_config = dict(
interval=50,
hooks=[
dict(type='CustomizedTextLoggerHook', by_epoch=False),
])
# yapf:enable
dist_params = dict(backend='nccl')
log_level = 'INFO'
load_from = None
resume_from = None
workflow = [('train', 1)]
cudnn_benchmark = True
total_iters = 20
# optimizer
optimizer = dict(type='AdamW', lr=1e-3, betas=(0.9, 0.999), weight_decay=0.05)
optimizer_config = dict(type='Fp16OptimizerHook', loss_scale='dynamic')
# learning policy
lr_config = dict(policy='poly',
warmup='linear',
warmup_iters=500,
warmup_ratio=1e-6,
power=1.0, min_lr=0.0, by_epoch=False)
# runtime settings
find_unused_parameters=True
runner = dict(type='IterBasedRunner', max_iters=total_iters * 1000)
checkpoint_config = dict(by_epoch=False, interval=total_iters * 1000, save_optimizer=False)
evaluation = dict(by_epoch=False, interval=5000, metric=['imDice', 'mDice'], pre_eval=True)
fp16 = dict()
work_dir = f'./work_dirs/tract/baseline'