a b/tools/torchserve/mmseg_handler.py
1
# Copyright (c) OpenMMLab. All rights reserved.
2
import base64
3
import os
4
5
import cv2
6
import mmcv
7
import torch
8
from mmcv.cnn.utils.sync_bn import revert_sync_batchnorm
9
from ts.torch_handler.base_handler import BaseHandler
10
11
from mmseg.apis import inference_segmentor, init_segmentor
12
13
14
class MMsegHandler(BaseHandler):
15
16
    def initialize(self, context):
17
        properties = context.system_properties
18
        self.map_location = 'cuda' if torch.cuda.is_available() else 'cpu'
19
        self.device = torch.device(self.map_location + ':' +
20
                                   str(properties.get('gpu_id')) if torch.cuda.
21
                                   is_available() else self.map_location)
22
        self.manifest = context.manifest
23
24
        model_dir = properties.get('model_dir')
25
        serialized_file = self.manifest['model']['serializedFile']
26
        checkpoint = os.path.join(model_dir, serialized_file)
27
        self.config_file = os.path.join(model_dir, 'config.py')
28
29
        self.model = init_segmentor(self.config_file, checkpoint, self.device)
30
        self.model = revert_sync_batchnorm(self.model)
31
        self.initialized = True
32
33
    def preprocess(self, data):
34
        images = []
35
36
        for row in data:
37
            image = row.get('data') or row.get('body')
38
            if isinstance(image, str):
39
                image = base64.b64decode(image)
40
            image = mmcv.imfrombytes(image)
41
            images.append(image)
42
43
        return images
44
45
    def inference(self, data, *args, **kwargs):
46
        results = [inference_segmentor(self.model, img) for img in data]
47
        return results
48
49
    def postprocess(self, data):
50
        output = []
51
52
        for image_result in data:
53
            _, buffer = cv2.imencode('.png', image_result[0].astype('uint8'))
54
            content = buffer.tobytes()
55
            output.append(content)
56
        return output