Switch to side-by-side view

--- a
+++ b/tools/torchserve/mmseg2torchserve.py
@@ -0,0 +1,111 @@
+# Copyright (c) OpenMMLab. All rights reserved.
+from argparse import ArgumentParser, Namespace
+from pathlib import Path
+from tempfile import TemporaryDirectory
+
+import mmcv
+
+try:
+    from model_archiver.model_packaging import package_model
+    from model_archiver.model_packaging_utils import ModelExportUtils
+except ImportError:
+    package_model = None
+
+
+def mmseg2torchserve(
+    config_file: str,
+    checkpoint_file: str,
+    output_folder: str,
+    model_name: str,
+    model_version: str = '1.0',
+    force: bool = False,
+):
+    """Converts mmsegmentation model (config + checkpoint) to TorchServe
+    `.mar`.
+
+    Args:
+        config_file:
+            In MMSegmentation config format.
+            The contents vary for each task repository.
+        checkpoint_file:
+            In MMSegmentation checkpoint format.
+            The contents vary for each task repository.
+        output_folder:
+            Folder where `{model_name}.mar` will be created.
+            The file created will be in TorchServe archive format.
+        model_name:
+            If not None, used for naming the `{model_name}.mar` file
+            that will be created under `output_folder`.
+            If None, `{Path(checkpoint_file).stem}` will be used.
+        model_version:
+            Model's version.
+        force:
+            If True, if there is an existing `{model_name}.mar`
+            file under `output_folder` it will be overwritten.
+    """
+    mmcv.mkdir_or_exist(output_folder)
+
+    config = mmcv.Config.fromfile(config_file)
+
+    with TemporaryDirectory() as tmpdir:
+        config.dump(f'{tmpdir}/config.py')
+
+        args = Namespace(
+            **{
+                'model_file': f'{tmpdir}/config.py',
+                'serialized_file': checkpoint_file,
+                'handler': f'{Path(__file__).parent}/mmseg_handler.py',
+                'model_name': model_name or Path(checkpoint_file).stem,
+                'version': model_version,
+                'export_path': output_folder,
+                'force': force,
+                'requirements_file': None,
+                'extra_files': None,
+                'runtime': 'python',
+                'archive_format': 'default'
+            })
+        manifest = ModelExportUtils.generate_manifest_json(args)
+        package_model(args, manifest)
+
+
+def parse_args():
+    parser = ArgumentParser(
+        description='Convert mmseg models to TorchServe `.mar` format.')
+    parser.add_argument('config', type=str, help='config file path')
+    parser.add_argument('checkpoint', type=str, help='checkpoint file path')
+    parser.add_argument(
+        '--output-folder',
+        type=str,
+        required=True,
+        help='Folder where `{model_name}.mar` will be created.')
+    parser.add_argument(
+        '--model-name',
+        type=str,
+        default=None,
+        help='If not None, used for naming the `{model_name}.mar`'
+        'file that will be created under `output_folder`.'
+        'If None, `{Path(checkpoint_file).stem}` will be used.')
+    parser.add_argument(
+        '--model-version',
+        type=str,
+        default='1.0',
+        help='Number used for versioning.')
+    parser.add_argument(
+        '-f',
+        '--force',
+        action='store_true',
+        help='overwrite the existing `{model_name}.mar`')
+    args = parser.parse_args()
+
+    return args
+
+
+if __name__ == '__main__':
+    args = parse_args()
+
+    if package_model is None:
+        raise ImportError('`torch-model-archiver` is required.'
+                          'Try: pip install torch-model-archiver')
+
+    mmseg2torchserve(args.config, args.checkpoint, args.output_folder,
+                     args.model_name, args.model_version, args.force)