a b/tools/publish_model.py
1
# Copyright (c) OpenMMLab. All rights reserved.
2
import argparse
3
import subprocess
4
5
import torch
6
7
8
def parse_args():
9
    parser = argparse.ArgumentParser(
10
        description='Process a checkpoint to be published')
11
    parser.add_argument('in_file', help='input checkpoint filename')
12
    parser.add_argument('out_file', help='output checkpoint filename')
13
    args = parser.parse_args()
14
    return args
15
16
17
def process_checkpoint(in_file, out_file):
18
    checkpoint = torch.load(in_file, map_location='cpu')
19
    # remove optimizer for smaller file size
20
    if 'optimizer' in checkpoint:
21
        del checkpoint['optimizer']
22
    # if it is necessary to remove some sensitive data in checkpoint['meta'],
23
    # add the code here.
24
    torch.save(checkpoint, out_file)
25
    sha = subprocess.check_output(['sha256sum', out_file]).decode()
26
    final_file = out_file.rstrip('.pth') + '-{}.pth'.format(sha[:8])
27
    subprocess.Popen(['mv', out_file, final_file])
28
29
30
def main():
31
    args = parse_args()
32
    process_checkpoint(args.in_file, args.out_file)
33
34
35
if __name__ == '__main__':
36
    main()