|
a |
|
b/tools/model_converters/stdc2mmseg.py |
|
|
1 |
# Copyright (c) OpenMMLab. All rights reserved. |
|
|
2 |
import argparse |
|
|
3 |
import os.path as osp |
|
|
4 |
|
|
|
5 |
import mmcv |
|
|
6 |
import torch |
|
|
7 |
from mmcv.runner import CheckpointLoader |
|
|
8 |
|
|
|
9 |
|
|
|
10 |
def convert_stdc(ckpt, stdc_type): |
|
|
11 |
new_state_dict = {} |
|
|
12 |
if stdc_type == 'STDC1': |
|
|
13 |
stage_lst = ['0', '1', '2.0', '2.1', '3.0', '3.1', '4.0', '4.1'] |
|
|
14 |
else: |
|
|
15 |
stage_lst = [ |
|
|
16 |
'0', '1', '2.0', '2.1', '2.2', '2.3', '3.0', '3.1', '3.2', '3.3', |
|
|
17 |
'3.4', '4.0', '4.1', '4.2' |
|
|
18 |
] |
|
|
19 |
for k, v in ckpt.items(): |
|
|
20 |
ori_k = k |
|
|
21 |
flag = False |
|
|
22 |
if 'cp.' in k: |
|
|
23 |
k = k.replace('cp.', '') |
|
|
24 |
if 'features.' in k: |
|
|
25 |
num_layer = int(k.split('.')[1]) |
|
|
26 |
feature_key_lst = 'features.' + str(num_layer) + '.' |
|
|
27 |
stages_key_lst = 'stages.' + stage_lst[num_layer] + '.' |
|
|
28 |
k = k.replace(feature_key_lst, stages_key_lst) |
|
|
29 |
flag = True |
|
|
30 |
if 'conv_list' in k: |
|
|
31 |
k = k.replace('conv_list', 'layers') |
|
|
32 |
flag = True |
|
|
33 |
if 'avd_layer.' in k: |
|
|
34 |
if 'avd_layer.0' in k: |
|
|
35 |
k = k.replace('avd_layer.0', 'downsample.conv') |
|
|
36 |
elif 'avd_layer.1' in k: |
|
|
37 |
k = k.replace('avd_layer.1', 'downsample.bn') |
|
|
38 |
flag = True |
|
|
39 |
if flag: |
|
|
40 |
new_state_dict[k] = ckpt[ori_k] |
|
|
41 |
|
|
|
42 |
return new_state_dict |
|
|
43 |
|
|
|
44 |
|
|
|
45 |
def main(): |
|
|
46 |
parser = argparse.ArgumentParser( |
|
|
47 |
description='Convert keys in official pretrained STDC1/2 to ' |
|
|
48 |
'MMSegmentation style.') |
|
|
49 |
parser.add_argument('src', help='src model path') |
|
|
50 |
# The dst path must be a full path of the new checkpoint. |
|
|
51 |
parser.add_argument('dst', help='save path') |
|
|
52 |
parser.add_argument('type', help='model type: STDC1 or STDC2') |
|
|
53 |
args = parser.parse_args() |
|
|
54 |
|
|
|
55 |
checkpoint = CheckpointLoader.load_checkpoint(args.src, map_location='cpu') |
|
|
56 |
if 'state_dict' in checkpoint: |
|
|
57 |
state_dict = checkpoint['state_dict'] |
|
|
58 |
elif 'model' in checkpoint: |
|
|
59 |
state_dict = checkpoint['model'] |
|
|
60 |
else: |
|
|
61 |
state_dict = checkpoint |
|
|
62 |
|
|
|
63 |
assert args.type in ['STDC1', |
|
|
64 |
'STDC2'], 'STD type should be STDC1 or STDC2!' |
|
|
65 |
weight = convert_stdc(state_dict, args.type) |
|
|
66 |
mmcv.mkdir_or_exist(osp.dirname(args.dst)) |
|
|
67 |
torch.save(weight, args.dst) |
|
|
68 |
|
|
|
69 |
|
|
|
70 |
if __name__ == '__main__': |
|
|
71 |
main() |