|
a |
|
b/tools/model_converters/mit2mmseg.py |
|
|
1 |
# Copyright (c) OpenMMLab. All rights reserved. |
|
|
2 |
import argparse |
|
|
3 |
import os.path as osp |
|
|
4 |
from collections import OrderedDict |
|
|
5 |
|
|
|
6 |
import mmcv |
|
|
7 |
import torch |
|
|
8 |
from mmcv.runner import CheckpointLoader |
|
|
9 |
|
|
|
10 |
|
|
|
11 |
def convert_mit(ckpt): |
|
|
12 |
new_ckpt = OrderedDict() |
|
|
13 |
# Process the concat between q linear weights and kv linear weights |
|
|
14 |
for k, v in ckpt.items(): |
|
|
15 |
if k.startswith('head'): |
|
|
16 |
continue |
|
|
17 |
# patch embedding conversion |
|
|
18 |
elif k.startswith('patch_embed'): |
|
|
19 |
stage_i = int(k.split('.')[0].replace('patch_embed', '')) |
|
|
20 |
new_k = k.replace(f'patch_embed{stage_i}', f'layers.{stage_i-1}.0') |
|
|
21 |
new_v = v |
|
|
22 |
if 'proj.' in new_k: |
|
|
23 |
new_k = new_k.replace('proj.', 'projection.') |
|
|
24 |
# transformer encoder layer conversion |
|
|
25 |
elif k.startswith('block'): |
|
|
26 |
stage_i = int(k.split('.')[0].replace('block', '')) |
|
|
27 |
new_k = k.replace(f'block{stage_i}', f'layers.{stage_i-1}.1') |
|
|
28 |
new_v = v |
|
|
29 |
if 'attn.q.' in new_k: |
|
|
30 |
sub_item_k = k.replace('q.', 'kv.') |
|
|
31 |
new_k = new_k.replace('q.', 'attn.in_proj_') |
|
|
32 |
new_v = torch.cat([v, ckpt[sub_item_k]], dim=0) |
|
|
33 |
elif 'attn.kv.' in new_k: |
|
|
34 |
continue |
|
|
35 |
elif 'attn.proj.' in new_k: |
|
|
36 |
new_k = new_k.replace('proj.', 'attn.out_proj.') |
|
|
37 |
elif 'attn.sr.' in new_k: |
|
|
38 |
new_k = new_k.replace('sr.', 'sr.') |
|
|
39 |
elif 'mlp.' in new_k: |
|
|
40 |
string = f'{new_k}-' |
|
|
41 |
new_k = new_k.replace('mlp.', 'ffn.layers.') |
|
|
42 |
if 'fc1.weight' in new_k or 'fc2.weight' in new_k: |
|
|
43 |
new_v = v.reshape((*v.shape, 1, 1)) |
|
|
44 |
new_k = new_k.replace('fc1.', '0.') |
|
|
45 |
new_k = new_k.replace('dwconv.dwconv.', '1.') |
|
|
46 |
new_k = new_k.replace('fc2.', '4.') |
|
|
47 |
string += f'{new_k} {v.shape}-{new_v.shape}' |
|
|
48 |
# norm layer conversion |
|
|
49 |
elif k.startswith('norm'): |
|
|
50 |
stage_i = int(k.split('.')[0].replace('norm', '')) |
|
|
51 |
new_k = k.replace(f'norm{stage_i}', f'layers.{stage_i-1}.2') |
|
|
52 |
new_v = v |
|
|
53 |
else: |
|
|
54 |
new_k = k |
|
|
55 |
new_v = v |
|
|
56 |
new_ckpt[new_k] = new_v |
|
|
57 |
return new_ckpt |
|
|
58 |
|
|
|
59 |
|
|
|
60 |
def main(): |
|
|
61 |
parser = argparse.ArgumentParser( |
|
|
62 |
description='Convert keys in official pretrained segformer to ' |
|
|
63 |
'MMSegmentation style.') |
|
|
64 |
parser.add_argument('src', help='src model path or url') |
|
|
65 |
# The dst path must be a full path of the new checkpoint. |
|
|
66 |
parser.add_argument('dst', help='save path') |
|
|
67 |
args = parser.parse_args() |
|
|
68 |
|
|
|
69 |
checkpoint = CheckpointLoader.load_checkpoint(args.src, map_location='cpu') |
|
|
70 |
if 'state_dict' in checkpoint: |
|
|
71 |
state_dict = checkpoint['state_dict'] |
|
|
72 |
elif 'model' in checkpoint: |
|
|
73 |
state_dict = checkpoint['model'] |
|
|
74 |
else: |
|
|
75 |
state_dict = checkpoint |
|
|
76 |
weight = convert_mit(state_dict) |
|
|
77 |
mmcv.mkdir_or_exist(osp.dirname(args.dst)) |
|
|
78 |
torch.save(weight, args.dst) |
|
|
79 |
|
|
|
80 |
|
|
|
81 |
if __name__ == '__main__': |
|
|
82 |
main() |