--- a +++ b/tools/get_flops.py @@ -0,0 +1,59 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import argparse + +from mmcv import Config +from mmcv.cnn import get_model_complexity_info + +from mmseg.models import build_segmentor + + +def parse_args(): + parser = argparse.ArgumentParser(description='Train a segmentor') + parser.add_argument('config', help='train config file path') + parser.add_argument( + '--shape', + type=int, + nargs='+', + default=[2048, 1024], + help='input image size') + args = parser.parse_args() + return args + + +def main(): + + args = parse_args() + + if len(args.shape) == 1: + input_shape = (3, args.shape[0], args.shape[0]) + elif len(args.shape) == 2: + input_shape = (3, ) + tuple(args.shape) + else: + raise ValueError('invalid input shape') + + cfg = Config.fromfile(args.config) + cfg.model.pretrained = None + model = build_segmentor( + cfg.model, + train_cfg=cfg.get('train_cfg'), + test_cfg=cfg.get('test_cfg')).cuda() + model.eval() + + if hasattr(model, 'forward_dummy'): + model.forward = model.forward_dummy + else: + raise NotImplementedError( + 'FLOPs counter is currently not currently supported with {}'. + format(model.__class__.__name__)) + + flops, params = get_model_complexity_info(model, input_shape) + split_line = '=' * 30 + print('{0}\nInput shape: {1}\nFlops: {2}\nParams: {3}\n{0}'.format( + split_line, input_shape, flops, params)) + print('!!!Please be cautious if you use the results in papers. ' + 'You may need to check if all ops are supported and verify that the ' + 'flops computation is correct.') + + +if __name__ == '__main__': + main()