a b/tools/convert_datasets/voc_aug.py
1
# Copyright (c) OpenMMLab. All rights reserved.
2
import argparse
3
import os.path as osp
4
from functools import partial
5
6
import mmcv
7
import numpy as np
8
from PIL import Image
9
from scipy.io import loadmat
10
11
AUG_LEN = 10582
12
13
14
def convert_mat(mat_file, in_dir, out_dir):
15
    data = loadmat(osp.join(in_dir, mat_file))
16
    mask = data['GTcls'][0]['Segmentation'][0].astype(np.uint8)
17
    seg_filename = osp.join(out_dir, mat_file.replace('.mat', '.png'))
18
    Image.fromarray(mask).save(seg_filename, 'PNG')
19
20
21
def generate_aug_list(merged_list, excluded_list):
22
    return list(set(merged_list) - set(excluded_list))
23
24
25
def parse_args():
26
    parser = argparse.ArgumentParser(
27
        description='Convert PASCAL VOC annotations to mmsegmentation format')
28
    parser.add_argument('devkit_path', help='pascal voc devkit path')
29
    parser.add_argument('aug_path', help='pascal voc aug path')
30
    parser.add_argument('-o', '--out_dir', help='output path')
31
    parser.add_argument(
32
        '--nproc', default=1, type=int, help='number of process')
33
    args = parser.parse_args()
34
    return args
35
36
37
def main():
38
    args = parse_args()
39
    devkit_path = args.devkit_path
40
    aug_path = args.aug_path
41
    nproc = args.nproc
42
    if args.out_dir is None:
43
        out_dir = osp.join(devkit_path, 'VOC2012', 'SegmentationClassAug')
44
    else:
45
        out_dir = args.out_dir
46
    mmcv.mkdir_or_exist(out_dir)
47
    in_dir = osp.join(aug_path, 'dataset', 'cls')
48
49
    mmcv.track_parallel_progress(
50
        partial(convert_mat, in_dir=in_dir, out_dir=out_dir),
51
        list(mmcv.scandir(in_dir, suffix='.mat')),
52
        nproc=nproc)
53
54
    full_aug_list = []
55
    with open(osp.join(aug_path, 'dataset', 'train.txt')) as f:
56
        full_aug_list += [line.strip() for line in f]
57
    with open(osp.join(aug_path, 'dataset', 'val.txt')) as f:
58
        full_aug_list += [line.strip() for line in f]
59
60
    with open(
61
            osp.join(devkit_path, 'VOC2012/ImageSets/Segmentation',
62
                     'train.txt')) as f:
63
        ori_train_list = [line.strip() for line in f]
64
    with open(
65
            osp.join(devkit_path, 'VOC2012/ImageSets/Segmentation',
66
                     'val.txt')) as f:
67
        val_list = [line.strip() for line in f]
68
69
    aug_train_list = generate_aug_list(ori_train_list + full_aug_list,
70
                                       val_list)
71
    assert len(aug_train_list) == AUG_LEN, 'len(aug_train_list) != {}'.format(
72
        AUG_LEN)
73
74
    with open(
75
            osp.join(devkit_path, 'VOC2012/ImageSets/Segmentation',
76
                     'trainaug.txt'), 'w') as f:
77
        f.writelines(line + '\n' for line in aug_train_list)
78
79
    aug_list = generate_aug_list(full_aug_list, ori_train_list + val_list)
80
    assert len(aug_list) == AUG_LEN - len(
81
        ori_train_list), 'len(aug_list) != {}'.format(AUG_LEN -
82
                                                      len(ori_train_list))
83
    with open(
84
            osp.join(devkit_path, 'VOC2012/ImageSets/Segmentation', 'aug.txt'),
85
            'w') as f:
86
        f.writelines(line + '\n' for line in aug_list)
87
88
    print('Done!')
89
90
91
if __name__ == '__main__':
92
    main()