Download this file

112 lines (95 with data), 4.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os
import os.path as osp
import tempfile
import zipfile
import mmcv
HRF_LEN = 15
TRAINING_LEN = 5
def parse_args():
parser = argparse.ArgumentParser(
description='Convert HRF dataset to mmsegmentation format')
parser.add_argument('healthy_path', help='the path of healthy.zip')
parser.add_argument(
'healthy_manualsegm_path', help='the path of healthy_manualsegm.zip')
parser.add_argument('glaucoma_path', help='the path of glaucoma.zip')
parser.add_argument(
'glaucoma_manualsegm_path', help='the path of glaucoma_manualsegm.zip')
parser.add_argument(
'diabetic_retinopathy_path',
help='the path of diabetic_retinopathy.zip')
parser.add_argument(
'diabetic_retinopathy_manualsegm_path',
help='the path of diabetic_retinopathy_manualsegm.zip')
parser.add_argument('--tmp_dir', help='path of the temporary directory')
parser.add_argument('-o', '--out_dir', help='output path')
args = parser.parse_args()
return args
def main():
args = parse_args()
images_path = [
args.healthy_path, args.glaucoma_path, args.diabetic_retinopathy_path
]
annotations_path = [
args.healthy_manualsegm_path, args.glaucoma_manualsegm_path,
args.diabetic_retinopathy_manualsegm_path
]
if args.out_dir is None:
out_dir = osp.join('data', 'HRF')
else:
out_dir = args.out_dir
print('Making directories...')
mmcv.mkdir_or_exist(out_dir)
mmcv.mkdir_or_exist(osp.join(out_dir, 'images'))
mmcv.mkdir_or_exist(osp.join(out_dir, 'images', 'training'))
mmcv.mkdir_or_exist(osp.join(out_dir, 'images', 'validation'))
mmcv.mkdir_or_exist(osp.join(out_dir, 'annotations'))
mmcv.mkdir_or_exist(osp.join(out_dir, 'annotations', 'training'))
mmcv.mkdir_or_exist(osp.join(out_dir, 'annotations', 'validation'))
print('Generating images...')
for now_path in images_path:
with tempfile.TemporaryDirectory(dir=args.tmp_dir) as tmp_dir:
zip_file = zipfile.ZipFile(now_path)
zip_file.extractall(tmp_dir)
assert len(os.listdir(tmp_dir)) == HRF_LEN, \
'len(os.listdir(tmp_dir)) != {}'.format(HRF_LEN)
for filename in sorted(os.listdir(tmp_dir))[:TRAINING_LEN]:
img = mmcv.imread(osp.join(tmp_dir, filename))
mmcv.imwrite(
img,
osp.join(out_dir, 'images', 'training',
osp.splitext(filename)[0] + '.png'))
for filename in sorted(os.listdir(tmp_dir))[TRAINING_LEN:]:
img = mmcv.imread(osp.join(tmp_dir, filename))
mmcv.imwrite(
img,
osp.join(out_dir, 'images', 'validation',
osp.splitext(filename)[0] + '.png'))
print('Generating annotations...')
for now_path in annotations_path:
with tempfile.TemporaryDirectory(dir=args.tmp_dir) as tmp_dir:
zip_file = zipfile.ZipFile(now_path)
zip_file.extractall(tmp_dir)
assert len(os.listdir(tmp_dir)) == HRF_LEN, \
'len(os.listdir(tmp_dir)) != {}'.format(HRF_LEN)
for filename in sorted(os.listdir(tmp_dir))[:TRAINING_LEN]:
img = mmcv.imread(osp.join(tmp_dir, filename))
# The annotation img should be divided by 128, because some of
# the annotation imgs are not standard. We should set a
# threshold to convert the nonstandard annotation imgs. The
# value divided by 128 is equivalent to '1 if value >= 128
# else 0'
mmcv.imwrite(
img[:, :, 0] // 128,
osp.join(out_dir, 'annotations', 'training',
osp.splitext(filename)[0] + '.png'))
for filename in sorted(os.listdir(tmp_dir))[TRAINING_LEN:]:
img = mmcv.imread(osp.join(tmp_dir, filename))
mmcv.imwrite(
img[:, :, 0] // 128,
osp.join(out_dir, 'annotations', 'validation',
osp.splitext(filename)[0] + '.png'))
print('Done!')
if __name__ == '__main__':
main()