--- a
+++ b/tools/convert_datasets/drive.py
@@ -0,0 +1,113 @@
+# Copyright (c) OpenMMLab. All rights reserved.
+import argparse
+import os
+import os.path as osp
+import tempfile
+import zipfile
+
+import cv2
+import mmcv
+
+
+def parse_args():
+    parser = argparse.ArgumentParser(
+        description='Convert DRIVE dataset to mmsegmentation format')
+    parser.add_argument(
+        'training_path', help='the training part of DRIVE dataset')
+    parser.add_argument(
+        'testing_path', help='the testing part of DRIVE dataset')
+    parser.add_argument('--tmp_dir', help='path of the temporary directory')
+    parser.add_argument('-o', '--out_dir', help='output path')
+    args = parser.parse_args()
+    return args
+
+
+def main():
+    args = parse_args()
+    training_path = args.training_path
+    testing_path = args.testing_path
+    if args.out_dir is None:
+        out_dir = osp.join('data', 'DRIVE')
+    else:
+        out_dir = args.out_dir
+
+    print('Making directories...')
+    mmcv.mkdir_or_exist(out_dir)
+    mmcv.mkdir_or_exist(osp.join(out_dir, 'images'))
+    mmcv.mkdir_or_exist(osp.join(out_dir, 'images', 'training'))
+    mmcv.mkdir_or_exist(osp.join(out_dir, 'images', 'validation'))
+    mmcv.mkdir_or_exist(osp.join(out_dir, 'annotations'))
+    mmcv.mkdir_or_exist(osp.join(out_dir, 'annotations', 'training'))
+    mmcv.mkdir_or_exist(osp.join(out_dir, 'annotations', 'validation'))
+
+    with tempfile.TemporaryDirectory(dir=args.tmp_dir) as tmp_dir:
+        print('Extracting training.zip...')
+        zip_file = zipfile.ZipFile(training_path)
+        zip_file.extractall(tmp_dir)
+
+        print('Generating training dataset...')
+        now_dir = osp.join(tmp_dir, 'training', 'images')
+        for img_name in os.listdir(now_dir):
+            img = mmcv.imread(osp.join(now_dir, img_name))
+            mmcv.imwrite(
+                img,
+                osp.join(
+                    out_dir, 'images', 'training',
+                    osp.splitext(img_name)[0].replace('_training', '') +
+                    '.png'))
+
+        now_dir = osp.join(tmp_dir, 'training', '1st_manual')
+        for img_name in os.listdir(now_dir):
+            cap = cv2.VideoCapture(osp.join(now_dir, img_name))
+            ret, img = cap.read()
+            mmcv.imwrite(
+                img[:, :, 0] // 128,
+                osp.join(out_dir, 'annotations', 'training',
+                         osp.splitext(img_name)[0] + '.png'))
+
+        print('Extracting test.zip...')
+        zip_file = zipfile.ZipFile(testing_path)
+        zip_file.extractall(tmp_dir)
+
+        print('Generating validation dataset...')
+        now_dir = osp.join(tmp_dir, 'test', 'images')
+        for img_name in os.listdir(now_dir):
+            img = mmcv.imread(osp.join(now_dir, img_name))
+            mmcv.imwrite(
+                img,
+                osp.join(
+                    out_dir, 'images', 'validation',
+                    osp.splitext(img_name)[0].replace('_test', '') + '.png'))
+
+        now_dir = osp.join(tmp_dir, 'test', '1st_manual')
+        if osp.exists(now_dir):
+            for img_name in os.listdir(now_dir):
+                cap = cv2.VideoCapture(osp.join(now_dir, img_name))
+                ret, img = cap.read()
+                # The annotation img should be divided by 128, because some of
+                # the annotation imgs are not standard. We should set a
+                # threshold to convert the nonstandard annotation imgs. The
+                # value divided by 128 is equivalent to '1 if value >= 128
+                # else 0'
+                mmcv.imwrite(
+                    img[:, :, 0] // 128,
+                    osp.join(out_dir, 'annotations', 'validation',
+                             osp.splitext(img_name)[0] + '.png'))
+
+        now_dir = osp.join(tmp_dir, 'test', '2nd_manual')
+        if osp.exists(now_dir):
+            for img_name in os.listdir(now_dir):
+                cap = cv2.VideoCapture(osp.join(now_dir, img_name))
+                ret, img = cap.read()
+                mmcv.imwrite(
+                    img[:, :, 0] // 128,
+                    osp.join(out_dir, 'annotations', 'validation',
+                             osp.splitext(img_name)[0] + '.png'))
+
+        print('Removing the temporary files...')
+
+    print('Done!')
+
+
+if __name__ == '__main__':
+    main()