|
a |
|
b/tools/browse_dataset.py |
|
|
1 |
import argparse |
|
|
2 |
import os |
|
|
3 |
import warnings |
|
|
4 |
from pathlib import Path |
|
|
5 |
|
|
|
6 |
import mmcv |
|
|
7 |
import numpy as np |
|
|
8 |
from mmcv import Config |
|
|
9 |
|
|
|
10 |
from mmseg.datasets.builder import build_dataset |
|
|
11 |
|
|
|
12 |
|
|
|
13 |
def parse_args(): |
|
|
14 |
parser = argparse.ArgumentParser(description='Browse a dataset') |
|
|
15 |
parser.add_argument('config', help='train config file path') |
|
|
16 |
parser.add_argument( |
|
|
17 |
'--show-origin', |
|
|
18 |
default=False, |
|
|
19 |
action='store_true', |
|
|
20 |
help='if True, omit all augmentation in pipeline,' |
|
|
21 |
' show origin image and seg map') |
|
|
22 |
parser.add_argument( |
|
|
23 |
'--skip-type', |
|
|
24 |
type=str, |
|
|
25 |
nargs='+', |
|
|
26 |
default=['DefaultFormatBundle', 'Normalize', 'Collect'], |
|
|
27 |
help='skip some useless pipeline,if `show-origin` is true, ' |
|
|
28 |
'all pipeline except `Load` will be skipped') |
|
|
29 |
parser.add_argument( |
|
|
30 |
'--output-dir', |
|
|
31 |
default='./output', |
|
|
32 |
type=str, |
|
|
33 |
help='If there is no display interface, you can save it') |
|
|
34 |
parser.add_argument('--show', default=False, action='store_true') |
|
|
35 |
parser.add_argument( |
|
|
36 |
'--show-interval', |
|
|
37 |
type=int, |
|
|
38 |
default=999, |
|
|
39 |
help='the interval of show (ms)') |
|
|
40 |
parser.add_argument( |
|
|
41 |
'--opacity', |
|
|
42 |
type=float, |
|
|
43 |
default=0.5, |
|
|
44 |
help='the opacity of semantic map') |
|
|
45 |
args = parser.parse_args() |
|
|
46 |
return args |
|
|
47 |
|
|
|
48 |
|
|
|
49 |
def imshow_semantic(img, |
|
|
50 |
seg, |
|
|
51 |
class_names, |
|
|
52 |
palette=None, |
|
|
53 |
win_name='', |
|
|
54 |
show=False, |
|
|
55 |
wait_time=0, |
|
|
56 |
out_file=None, |
|
|
57 |
opacity=0.5): |
|
|
58 |
"""Draw `result` over `img`. |
|
|
59 |
|
|
|
60 |
Args: |
|
|
61 |
img (str or Tensor): The image to be displayed. |
|
|
62 |
seg (Tensor): The semantic segmentation results to draw over |
|
|
63 |
`img`. |
|
|
64 |
class_names (list[str]): Names of each classes. |
|
|
65 |
palette (list[list[int]]] | np.ndarray | None): The palette of |
|
|
66 |
segmentation map. If None is given, random palette will be |
|
|
67 |
generated. Default: None |
|
|
68 |
win_name (str): The window name. |
|
|
69 |
wait_time (int): Value of waitKey param. |
|
|
70 |
Default: 0. |
|
|
71 |
show (bool): Whether to show the image. |
|
|
72 |
Default: False. |
|
|
73 |
out_file (str or None): The filename to write the image. |
|
|
74 |
Default: None. |
|
|
75 |
opacity(float): Opacity of painted segmentation map. |
|
|
76 |
Default 0.5. |
|
|
77 |
Must be in (0, 1] range. |
|
|
78 |
Returns: |
|
|
79 |
img (Tensor): Only if not `show` or `out_file` |
|
|
80 |
""" |
|
|
81 |
img = mmcv.imread(img) |
|
|
82 |
img = img.copy() |
|
|
83 |
if palette is None: |
|
|
84 |
palette = np.random.randint(0, 255, size=(len(class_names), 3)) |
|
|
85 |
palette = np.array(palette) |
|
|
86 |
assert palette.shape[0] == len(class_names) |
|
|
87 |
assert palette.shape[1] == 3 |
|
|
88 |
assert len(palette.shape) == 2 |
|
|
89 |
assert 0 < opacity <= 1.0 |
|
|
90 |
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) |
|
|
91 |
for label, color in enumerate(palette): |
|
|
92 |
color_seg[seg == label, :] = color |
|
|
93 |
# convert to BGR |
|
|
94 |
color_seg = color_seg[..., ::-1] |
|
|
95 |
|
|
|
96 |
img = img * (1 - opacity) + color_seg * opacity |
|
|
97 |
img = img.astype(np.uint8) |
|
|
98 |
# if out_file specified, do not show image in window |
|
|
99 |
if out_file is not None: |
|
|
100 |
show = False |
|
|
101 |
|
|
|
102 |
if show: |
|
|
103 |
mmcv.imshow(img, win_name, wait_time) |
|
|
104 |
if out_file is not None: |
|
|
105 |
mmcv.imwrite(img, out_file) |
|
|
106 |
|
|
|
107 |
if not (show or out_file): |
|
|
108 |
warnings.warn('show==False and out_file is not specified, only ' |
|
|
109 |
'result image will be returned') |
|
|
110 |
return img |
|
|
111 |
|
|
|
112 |
|
|
|
113 |
def _retrieve_data_cfg(_data_cfg, skip_type, show_origin): |
|
|
114 |
if show_origin is True: |
|
|
115 |
# only keep pipeline of Loading data and ann |
|
|
116 |
_data_cfg['pipeline'] = [ |
|
|
117 |
x for x in _data_cfg.pipeline if 'Load' in x['type'] |
|
|
118 |
] |
|
|
119 |
else: |
|
|
120 |
_data_cfg['pipeline'] = [ |
|
|
121 |
x for x in _data_cfg.pipeline if x['type'] not in skip_type |
|
|
122 |
] |
|
|
123 |
|
|
|
124 |
|
|
|
125 |
def retrieve_data_cfg(config_path, skip_type, show_origin=False): |
|
|
126 |
cfg = Config.fromfile(config_path) |
|
|
127 |
train_data_cfg = cfg.data.train |
|
|
128 |
if isinstance(train_data_cfg, list): |
|
|
129 |
for _data_cfg in train_data_cfg: |
|
|
130 |
if 'pipeline' in _data_cfg: |
|
|
131 |
_retrieve_data_cfg(_data_cfg, skip_type, show_origin) |
|
|
132 |
elif 'dataset' in _data_cfg: |
|
|
133 |
_retrieve_data_cfg(_data_cfg['dataset'], skip_type, |
|
|
134 |
show_origin) |
|
|
135 |
else: |
|
|
136 |
raise ValueError |
|
|
137 |
elif 'dataset' in train_data_cfg: |
|
|
138 |
_retrieve_data_cfg(train_data_cfg['dataset'], skip_type, show_origin) |
|
|
139 |
else: |
|
|
140 |
_retrieve_data_cfg(train_data_cfg, skip_type, show_origin) |
|
|
141 |
return cfg |
|
|
142 |
|
|
|
143 |
|
|
|
144 |
def main(): |
|
|
145 |
args = parse_args() |
|
|
146 |
cfg = retrieve_data_cfg(args.config, args.skip_type, args.show_origin) |
|
|
147 |
dataset = build_dataset(cfg.data.train) |
|
|
148 |
progress_bar = mmcv.ProgressBar(len(dataset)) |
|
|
149 |
for item in dataset: |
|
|
150 |
filename = os.path.join(args.output_dir, |
|
|
151 |
Path(item['filename']).name |
|
|
152 |
) if args.output_dir is not None else None |
|
|
153 |
imshow_semantic( |
|
|
154 |
item['img'], |
|
|
155 |
item['gt_semantic_seg'], |
|
|
156 |
dataset.CLASSES, |
|
|
157 |
dataset.PALETTE, |
|
|
158 |
show=args.show, |
|
|
159 |
wait_time=args.show_interval, |
|
|
160 |
out_file=filename, |
|
|
161 |
opacity=args.opacity, |
|
|
162 |
) |
|
|
163 |
progress_bar.update() |
|
|
164 |
|
|
|
165 |
|
|
|
166 |
if __name__ == '__main__': |
|
|
167 |
main() |