|
a |
|
b/tests/test_eval_hook.py |
|
|
1 |
# Copyright (c) OpenMMLab. All rights reserved. |
|
|
2 |
import logging |
|
|
3 |
import tempfile |
|
|
4 |
from unittest.mock import MagicMock, patch |
|
|
5 |
|
|
|
6 |
import mmcv.runner |
|
|
7 |
import pytest |
|
|
8 |
import torch |
|
|
9 |
import torch.nn as nn |
|
|
10 |
from mmcv.runner import obj_from_dict |
|
|
11 |
from torch.utils.data import DataLoader, Dataset |
|
|
12 |
|
|
|
13 |
from mmseg.apis import single_gpu_test |
|
|
14 |
from mmseg.core import DistEvalHook, EvalHook |
|
|
15 |
|
|
|
16 |
|
|
|
17 |
class ExampleDataset(Dataset): |
|
|
18 |
|
|
|
19 |
def __getitem__(self, idx): |
|
|
20 |
results = dict(img=torch.tensor([1]), img_metas=dict()) |
|
|
21 |
return results |
|
|
22 |
|
|
|
23 |
def __len__(self): |
|
|
24 |
return 1 |
|
|
25 |
|
|
|
26 |
|
|
|
27 |
class ExampleModel(nn.Module): |
|
|
28 |
|
|
|
29 |
def __init__(self): |
|
|
30 |
super(ExampleModel, self).__init__() |
|
|
31 |
self.test_cfg = None |
|
|
32 |
self.conv = nn.Conv2d(3, 3, 3) |
|
|
33 |
|
|
|
34 |
def forward(self, img, img_metas, test_mode=False, **kwargs): |
|
|
35 |
return img |
|
|
36 |
|
|
|
37 |
def train_step(self, data_batch, optimizer): |
|
|
38 |
loss = self.forward(**data_batch) |
|
|
39 |
return dict(loss=loss) |
|
|
40 |
|
|
|
41 |
|
|
|
42 |
def test_iter_eval_hook(): |
|
|
43 |
with pytest.raises(TypeError): |
|
|
44 |
test_dataset = ExampleModel() |
|
|
45 |
data_loader = [ |
|
|
46 |
DataLoader( |
|
|
47 |
test_dataset, |
|
|
48 |
batch_size=1, |
|
|
49 |
sampler=None, |
|
|
50 |
num_worker=0, |
|
|
51 |
shuffle=False) |
|
|
52 |
] |
|
|
53 |
EvalHook(data_loader) |
|
|
54 |
|
|
|
55 |
test_dataset = ExampleDataset() |
|
|
56 |
test_dataset.pre_eval = MagicMock(return_value=[torch.tensor([1])]) |
|
|
57 |
test_dataset.evaluate = MagicMock(return_value=dict(test='success')) |
|
|
58 |
loader = DataLoader(test_dataset, batch_size=1) |
|
|
59 |
model = ExampleModel() |
|
|
60 |
data_loader = DataLoader( |
|
|
61 |
test_dataset, batch_size=1, sampler=None, num_workers=0, shuffle=False) |
|
|
62 |
optim_cfg = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005) |
|
|
63 |
optimizer = obj_from_dict(optim_cfg, torch.optim, |
|
|
64 |
dict(params=model.parameters())) |
|
|
65 |
|
|
|
66 |
# test EvalHook |
|
|
67 |
with tempfile.TemporaryDirectory() as tmpdir: |
|
|
68 |
eval_hook = EvalHook(data_loader, by_epoch=False, efficient_test=True) |
|
|
69 |
runner = mmcv.runner.IterBasedRunner( |
|
|
70 |
model=model, |
|
|
71 |
optimizer=optimizer, |
|
|
72 |
work_dir=tmpdir, |
|
|
73 |
logger=logging.getLogger()) |
|
|
74 |
runner.register_hook(eval_hook) |
|
|
75 |
runner.run([loader], [('train', 1)], 1) |
|
|
76 |
test_dataset.evaluate.assert_called_with([torch.tensor([1])], |
|
|
77 |
logger=runner.logger) |
|
|
78 |
|
|
|
79 |
|
|
|
80 |
def test_epoch_eval_hook(): |
|
|
81 |
with pytest.raises(TypeError): |
|
|
82 |
test_dataset = ExampleModel() |
|
|
83 |
data_loader = [ |
|
|
84 |
DataLoader( |
|
|
85 |
test_dataset, |
|
|
86 |
batch_size=1, |
|
|
87 |
sampler=None, |
|
|
88 |
num_worker=0, |
|
|
89 |
shuffle=False) |
|
|
90 |
] |
|
|
91 |
EvalHook(data_loader, by_epoch=True) |
|
|
92 |
|
|
|
93 |
test_dataset = ExampleDataset() |
|
|
94 |
test_dataset.pre_eval = MagicMock(return_value=[torch.tensor([1])]) |
|
|
95 |
test_dataset.evaluate = MagicMock(return_value=dict(test='success')) |
|
|
96 |
loader = DataLoader(test_dataset, batch_size=1) |
|
|
97 |
model = ExampleModel() |
|
|
98 |
data_loader = DataLoader( |
|
|
99 |
test_dataset, batch_size=1, sampler=None, num_workers=0, shuffle=False) |
|
|
100 |
optim_cfg = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005) |
|
|
101 |
optimizer = obj_from_dict(optim_cfg, torch.optim, |
|
|
102 |
dict(params=model.parameters())) |
|
|
103 |
|
|
|
104 |
# test EvalHook with interval |
|
|
105 |
with tempfile.TemporaryDirectory() as tmpdir: |
|
|
106 |
eval_hook = EvalHook(data_loader, by_epoch=True, interval=2) |
|
|
107 |
runner = mmcv.runner.EpochBasedRunner( |
|
|
108 |
model=model, |
|
|
109 |
optimizer=optimizer, |
|
|
110 |
work_dir=tmpdir, |
|
|
111 |
logger=logging.getLogger()) |
|
|
112 |
runner.register_hook(eval_hook) |
|
|
113 |
runner.run([loader], [('train', 1)], 2) |
|
|
114 |
test_dataset.evaluate.assert_called_once_with([torch.tensor([1])], |
|
|
115 |
logger=runner.logger) |
|
|
116 |
|
|
|
117 |
|
|
|
118 |
def multi_gpu_test(model, |
|
|
119 |
data_loader, |
|
|
120 |
tmpdir=None, |
|
|
121 |
gpu_collect=False, |
|
|
122 |
pre_eval=False): |
|
|
123 |
# Pre eval is set by default when training. |
|
|
124 |
results = single_gpu_test(model, data_loader, pre_eval=True) |
|
|
125 |
return results |
|
|
126 |
|
|
|
127 |
|
|
|
128 |
@patch('mmseg.apis.multi_gpu_test', multi_gpu_test) |
|
|
129 |
def test_dist_eval_hook(): |
|
|
130 |
with pytest.raises(TypeError): |
|
|
131 |
test_dataset = ExampleModel() |
|
|
132 |
data_loader = [ |
|
|
133 |
DataLoader( |
|
|
134 |
test_dataset, |
|
|
135 |
batch_size=1, |
|
|
136 |
sampler=None, |
|
|
137 |
num_worker=0, |
|
|
138 |
shuffle=False) |
|
|
139 |
] |
|
|
140 |
DistEvalHook(data_loader) |
|
|
141 |
|
|
|
142 |
test_dataset = ExampleDataset() |
|
|
143 |
test_dataset.pre_eval = MagicMock(return_value=[torch.tensor([1])]) |
|
|
144 |
test_dataset.evaluate = MagicMock(return_value=dict(test='success')) |
|
|
145 |
loader = DataLoader(test_dataset, batch_size=1) |
|
|
146 |
model = ExampleModel() |
|
|
147 |
data_loader = DataLoader( |
|
|
148 |
test_dataset, batch_size=1, sampler=None, num_workers=0, shuffle=False) |
|
|
149 |
optim_cfg = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005) |
|
|
150 |
optimizer = obj_from_dict(optim_cfg, torch.optim, |
|
|
151 |
dict(params=model.parameters())) |
|
|
152 |
|
|
|
153 |
# test DistEvalHook |
|
|
154 |
with tempfile.TemporaryDirectory() as tmpdir: |
|
|
155 |
eval_hook = DistEvalHook( |
|
|
156 |
data_loader, by_epoch=False, efficient_test=True) |
|
|
157 |
runner = mmcv.runner.IterBasedRunner( |
|
|
158 |
model=model, |
|
|
159 |
optimizer=optimizer, |
|
|
160 |
work_dir=tmpdir, |
|
|
161 |
logger=logging.getLogger()) |
|
|
162 |
runner.register_hook(eval_hook) |
|
|
163 |
runner.run([loader], [('train', 1)], 1) |
|
|
164 |
test_dataset.evaluate.assert_called_with([torch.tensor([1])], |
|
|
165 |
logger=runner.logger) |
|
|
166 |
|
|
|
167 |
|
|
|
168 |
@patch('mmseg.apis.multi_gpu_test', multi_gpu_test) |
|
|
169 |
def test_dist_eval_hook_epoch(): |
|
|
170 |
with pytest.raises(TypeError): |
|
|
171 |
test_dataset = ExampleModel() |
|
|
172 |
data_loader = [ |
|
|
173 |
DataLoader( |
|
|
174 |
test_dataset, |
|
|
175 |
batch_size=1, |
|
|
176 |
sampler=None, |
|
|
177 |
num_worker=0, |
|
|
178 |
shuffle=False) |
|
|
179 |
] |
|
|
180 |
DistEvalHook(data_loader) |
|
|
181 |
|
|
|
182 |
test_dataset = ExampleDataset() |
|
|
183 |
test_dataset.pre_eval = MagicMock(return_value=[torch.tensor([1])]) |
|
|
184 |
test_dataset.evaluate = MagicMock(return_value=dict(test='success')) |
|
|
185 |
loader = DataLoader(test_dataset, batch_size=1) |
|
|
186 |
model = ExampleModel() |
|
|
187 |
data_loader = DataLoader( |
|
|
188 |
test_dataset, batch_size=1, sampler=None, num_workers=0, shuffle=False) |
|
|
189 |
optim_cfg = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005) |
|
|
190 |
optimizer = obj_from_dict(optim_cfg, torch.optim, |
|
|
191 |
dict(params=model.parameters())) |
|
|
192 |
|
|
|
193 |
# test DistEvalHook |
|
|
194 |
with tempfile.TemporaryDirectory() as tmpdir: |
|
|
195 |
eval_hook = DistEvalHook(data_loader, by_epoch=True, interval=2) |
|
|
196 |
runner = mmcv.runner.EpochBasedRunner( |
|
|
197 |
model=model, |
|
|
198 |
optimizer=optimizer, |
|
|
199 |
work_dir=tmpdir, |
|
|
200 |
logger=logging.getLogger()) |
|
|
201 |
runner.register_hook(eval_hook) |
|
|
202 |
runner.run([loader], [('train', 1)], 2) |
|
|
203 |
test_dataset.evaluate.assert_called_with([torch.tensor([1])], |
|
|
204 |
logger=runner.logger) |