|
a |
|
b/tests/test_data/test_dataset.py |
|
|
1 |
# Copyright (c) OpenMMLab. All rights reserved. |
|
|
2 |
import os |
|
|
3 |
import os.path as osp |
|
|
4 |
import shutil |
|
|
5 |
import tempfile |
|
|
6 |
from typing import Generator |
|
|
7 |
from unittest.mock import MagicMock, patch |
|
|
8 |
|
|
|
9 |
import numpy as np |
|
|
10 |
import pytest |
|
|
11 |
import torch |
|
|
12 |
from PIL import Image |
|
|
13 |
|
|
|
14 |
from mmseg.core.evaluation import get_classes, get_palette |
|
|
15 |
from mmseg.datasets import (DATASETS, ADE20KDataset, CityscapesDataset, |
|
|
16 |
ConcatDataset, CustomDataset, LoveDADataset, |
|
|
17 |
PascalVOCDataset, RepeatDataset, build_dataset) |
|
|
18 |
|
|
|
19 |
|
|
|
20 |
def test_classes(): |
|
|
21 |
assert list(CityscapesDataset.CLASSES) == get_classes('cityscapes') |
|
|
22 |
assert list(PascalVOCDataset.CLASSES) == get_classes('voc') == get_classes( |
|
|
23 |
'pascal_voc') |
|
|
24 |
assert list( |
|
|
25 |
ADE20KDataset.CLASSES) == get_classes('ade') == get_classes('ade20k') |
|
|
26 |
|
|
|
27 |
with pytest.raises(ValueError): |
|
|
28 |
get_classes('unsupported') |
|
|
29 |
|
|
|
30 |
|
|
|
31 |
def test_classes_file_path(): |
|
|
32 |
tmp_file = tempfile.NamedTemporaryFile() |
|
|
33 |
classes_path = f'{tmp_file.name}.txt' |
|
|
34 |
train_pipeline = [dict(type='LoadImageFromFile')] |
|
|
35 |
kwargs = dict(pipeline=train_pipeline, img_dir='./', classes=classes_path) |
|
|
36 |
|
|
|
37 |
# classes.txt with full categories |
|
|
38 |
categories = get_classes('cityscapes') |
|
|
39 |
with open(classes_path, 'w') as f: |
|
|
40 |
f.write('\n'.join(categories)) |
|
|
41 |
assert list(CityscapesDataset(**kwargs).CLASSES) == categories |
|
|
42 |
|
|
|
43 |
# classes.txt with sub categories |
|
|
44 |
categories = ['road', 'sidewalk', 'building'] |
|
|
45 |
with open(classes_path, 'w') as f: |
|
|
46 |
f.write('\n'.join(categories)) |
|
|
47 |
assert list(CityscapesDataset(**kwargs).CLASSES) == categories |
|
|
48 |
|
|
|
49 |
# classes.txt with unknown categories |
|
|
50 |
categories = ['road', 'sidewalk', 'unknown'] |
|
|
51 |
with open(classes_path, 'w') as f: |
|
|
52 |
f.write('\n'.join(categories)) |
|
|
53 |
|
|
|
54 |
with pytest.raises(ValueError): |
|
|
55 |
CityscapesDataset(**kwargs) |
|
|
56 |
|
|
|
57 |
tmp_file.close() |
|
|
58 |
os.remove(classes_path) |
|
|
59 |
assert not osp.exists(classes_path) |
|
|
60 |
|
|
|
61 |
|
|
|
62 |
def test_palette(): |
|
|
63 |
assert CityscapesDataset.PALETTE == get_palette('cityscapes') |
|
|
64 |
assert PascalVOCDataset.PALETTE == get_palette('voc') == get_palette( |
|
|
65 |
'pascal_voc') |
|
|
66 |
assert ADE20KDataset.PALETTE == get_palette('ade') == get_palette('ade20k') |
|
|
67 |
|
|
|
68 |
with pytest.raises(ValueError): |
|
|
69 |
get_palette('unsupported') |
|
|
70 |
|
|
|
71 |
|
|
|
72 |
@patch('mmseg.datasets.CustomDataset.load_annotations', MagicMock) |
|
|
73 |
@patch('mmseg.datasets.CustomDataset.__getitem__', |
|
|
74 |
MagicMock(side_effect=lambda idx: idx)) |
|
|
75 |
def test_dataset_wrapper(): |
|
|
76 |
# CustomDataset.load_annotations = MagicMock() |
|
|
77 |
# CustomDataset.__getitem__ = MagicMock(side_effect=lambda idx: idx) |
|
|
78 |
dataset_a = CustomDataset(img_dir=MagicMock(), pipeline=[]) |
|
|
79 |
len_a = 10 |
|
|
80 |
dataset_a.img_infos = MagicMock() |
|
|
81 |
dataset_a.img_infos.__len__.return_value = len_a |
|
|
82 |
dataset_b = CustomDataset(img_dir=MagicMock(), pipeline=[]) |
|
|
83 |
len_b = 20 |
|
|
84 |
dataset_b.img_infos = MagicMock() |
|
|
85 |
dataset_b.img_infos.__len__.return_value = len_b |
|
|
86 |
|
|
|
87 |
concat_dataset = ConcatDataset([dataset_a, dataset_b]) |
|
|
88 |
assert concat_dataset[5] == 5 |
|
|
89 |
assert concat_dataset[25] == 15 |
|
|
90 |
assert len(concat_dataset) == len(dataset_a) + len(dataset_b) |
|
|
91 |
|
|
|
92 |
repeat_dataset = RepeatDataset(dataset_a, 10) |
|
|
93 |
assert repeat_dataset[5] == 5 |
|
|
94 |
assert repeat_dataset[15] == 5 |
|
|
95 |
assert repeat_dataset[27] == 7 |
|
|
96 |
assert len(repeat_dataset) == 10 * len(dataset_a) |
|
|
97 |
|
|
|
98 |
|
|
|
99 |
def test_custom_dataset(): |
|
|
100 |
img_norm_cfg = dict( |
|
|
101 |
mean=[123.675, 116.28, 103.53], |
|
|
102 |
std=[58.395, 57.12, 57.375], |
|
|
103 |
to_rgb=True) |
|
|
104 |
crop_size = (512, 1024) |
|
|
105 |
train_pipeline = [ |
|
|
106 |
dict(type='LoadImageFromFile'), |
|
|
107 |
dict(type='LoadAnnotations'), |
|
|
108 |
dict(type='Resize', img_scale=(128, 256), ratio_range=(0.5, 2.0)), |
|
|
109 |
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), |
|
|
110 |
dict(type='RandomFlip', prob=0.5), |
|
|
111 |
dict(type='PhotoMetricDistortion'), |
|
|
112 |
dict(type='Normalize', **img_norm_cfg), |
|
|
113 |
dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), |
|
|
114 |
dict(type='DefaultFormatBundle'), |
|
|
115 |
dict(type='Collect', keys=['img', 'gt_semantic_seg']), |
|
|
116 |
] |
|
|
117 |
test_pipeline = [ |
|
|
118 |
dict(type='LoadImageFromFile'), |
|
|
119 |
dict( |
|
|
120 |
type='MultiScaleFlipAug', |
|
|
121 |
img_scale=(128, 256), |
|
|
122 |
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], |
|
|
123 |
flip=False, |
|
|
124 |
transforms=[ |
|
|
125 |
dict(type='Resize', keep_ratio=True), |
|
|
126 |
dict(type='RandomFlip'), |
|
|
127 |
dict(type='Normalize', **img_norm_cfg), |
|
|
128 |
dict(type='ImageToTensor', keys=['img']), |
|
|
129 |
dict(type='Collect', keys=['img']), |
|
|
130 |
]) |
|
|
131 |
] |
|
|
132 |
|
|
|
133 |
# with img_dir and ann_dir |
|
|
134 |
train_dataset = CustomDataset( |
|
|
135 |
train_pipeline, |
|
|
136 |
data_root=osp.join(osp.dirname(__file__), '../data/pseudo_dataset'), |
|
|
137 |
img_dir='imgs/', |
|
|
138 |
ann_dir='gts/', |
|
|
139 |
img_suffix='img.jpg', |
|
|
140 |
seg_map_suffix='gt.png') |
|
|
141 |
assert len(train_dataset) == 5 |
|
|
142 |
|
|
|
143 |
# with img_dir, ann_dir, split |
|
|
144 |
train_dataset = CustomDataset( |
|
|
145 |
train_pipeline, |
|
|
146 |
data_root=osp.join(osp.dirname(__file__), '../data/pseudo_dataset'), |
|
|
147 |
img_dir='imgs/', |
|
|
148 |
ann_dir='gts/', |
|
|
149 |
img_suffix='img.jpg', |
|
|
150 |
seg_map_suffix='gt.png', |
|
|
151 |
split='splits/train.txt') |
|
|
152 |
assert len(train_dataset) == 4 |
|
|
153 |
|
|
|
154 |
# no data_root |
|
|
155 |
train_dataset = CustomDataset( |
|
|
156 |
train_pipeline, |
|
|
157 |
img_dir=osp.join(osp.dirname(__file__), '../data/pseudo_dataset/imgs'), |
|
|
158 |
ann_dir=osp.join(osp.dirname(__file__), '../data/pseudo_dataset/gts'), |
|
|
159 |
img_suffix='img.jpg', |
|
|
160 |
seg_map_suffix='gt.png') |
|
|
161 |
assert len(train_dataset) == 5 |
|
|
162 |
|
|
|
163 |
# with data_root but img_dir/ann_dir are abs path |
|
|
164 |
train_dataset = CustomDataset( |
|
|
165 |
train_pipeline, |
|
|
166 |
data_root=osp.join(osp.dirname(__file__), '../data/pseudo_dataset'), |
|
|
167 |
img_dir=osp.abspath( |
|
|
168 |
osp.join(osp.dirname(__file__), '../data/pseudo_dataset/imgs')), |
|
|
169 |
ann_dir=osp.abspath( |
|
|
170 |
osp.join(osp.dirname(__file__), '../data/pseudo_dataset/gts')), |
|
|
171 |
img_suffix='img.jpg', |
|
|
172 |
seg_map_suffix='gt.png') |
|
|
173 |
assert len(train_dataset) == 5 |
|
|
174 |
|
|
|
175 |
# test_mode=True |
|
|
176 |
test_dataset = CustomDataset( |
|
|
177 |
test_pipeline, |
|
|
178 |
img_dir=osp.join(osp.dirname(__file__), '../data/pseudo_dataset/imgs'), |
|
|
179 |
img_suffix='img.jpg', |
|
|
180 |
test_mode=True, |
|
|
181 |
classes=('pseudo_class', )) |
|
|
182 |
assert len(test_dataset) == 5 |
|
|
183 |
|
|
|
184 |
# training data get |
|
|
185 |
train_data = train_dataset[0] |
|
|
186 |
assert isinstance(train_data, dict) |
|
|
187 |
|
|
|
188 |
# test data get |
|
|
189 |
test_data = test_dataset[0] |
|
|
190 |
assert isinstance(test_data, dict) |
|
|
191 |
|
|
|
192 |
# get gt seg map |
|
|
193 |
gt_seg_maps = train_dataset.get_gt_seg_maps(efficient_test=True) |
|
|
194 |
assert isinstance(gt_seg_maps, Generator) |
|
|
195 |
gt_seg_maps = list(gt_seg_maps) |
|
|
196 |
assert len(gt_seg_maps) == 5 |
|
|
197 |
|
|
|
198 |
# format_results not implemented |
|
|
199 |
with pytest.raises(NotImplementedError): |
|
|
200 |
test_dataset.format_results([], '') |
|
|
201 |
|
|
|
202 |
pseudo_results = [] |
|
|
203 |
for gt_seg_map in gt_seg_maps: |
|
|
204 |
h, w = gt_seg_map.shape |
|
|
205 |
pseudo_results.append(np.random.randint(low=0, high=7, size=(h, w))) |
|
|
206 |
|
|
|
207 |
# test past evaluation without CLASSES |
|
|
208 |
with pytest.raises(TypeError): |
|
|
209 |
eval_results = train_dataset.evaluate(pseudo_results, metric=['mIoU']) |
|
|
210 |
|
|
|
211 |
with pytest.raises(TypeError): |
|
|
212 |
eval_results = train_dataset.evaluate(pseudo_results, metric='mDice') |
|
|
213 |
|
|
|
214 |
with pytest.raises(TypeError): |
|
|
215 |
eval_results = train_dataset.evaluate( |
|
|
216 |
pseudo_results, metric=['mDice', 'mIoU']) |
|
|
217 |
|
|
|
218 |
# test past evaluation with CLASSES |
|
|
219 |
train_dataset.CLASSES = tuple(['a'] * 7) |
|
|
220 |
eval_results = train_dataset.evaluate(pseudo_results, metric='mIoU') |
|
|
221 |
assert isinstance(eval_results, dict) |
|
|
222 |
assert 'mIoU' in eval_results |
|
|
223 |
assert 'mAcc' in eval_results |
|
|
224 |
assert 'aAcc' in eval_results |
|
|
225 |
|
|
|
226 |
eval_results = train_dataset.evaluate(pseudo_results, metric='mDice') |
|
|
227 |
assert isinstance(eval_results, dict) |
|
|
228 |
assert 'mDice' in eval_results |
|
|
229 |
assert 'mAcc' in eval_results |
|
|
230 |
assert 'aAcc' in eval_results |
|
|
231 |
|
|
|
232 |
eval_results = train_dataset.evaluate(pseudo_results, metric='mFscore') |
|
|
233 |
assert isinstance(eval_results, dict) |
|
|
234 |
assert 'mRecall' in eval_results |
|
|
235 |
assert 'mPrecision' in eval_results |
|
|
236 |
assert 'mFscore' in eval_results |
|
|
237 |
assert 'aAcc' in eval_results |
|
|
238 |
|
|
|
239 |
eval_results = train_dataset.evaluate( |
|
|
240 |
pseudo_results, metric=['mIoU', 'mDice', 'mFscore']) |
|
|
241 |
assert isinstance(eval_results, dict) |
|
|
242 |
assert 'mIoU' in eval_results |
|
|
243 |
assert 'mDice' in eval_results |
|
|
244 |
assert 'mAcc' in eval_results |
|
|
245 |
assert 'aAcc' in eval_results |
|
|
246 |
assert 'mFscore' in eval_results |
|
|
247 |
assert 'mPrecision' in eval_results |
|
|
248 |
assert 'mRecall' in eval_results |
|
|
249 |
|
|
|
250 |
assert not np.isnan(eval_results['mIoU']) |
|
|
251 |
assert not np.isnan(eval_results['mDice']) |
|
|
252 |
assert not np.isnan(eval_results['mAcc']) |
|
|
253 |
assert not np.isnan(eval_results['aAcc']) |
|
|
254 |
assert not np.isnan(eval_results['mFscore']) |
|
|
255 |
assert not np.isnan(eval_results['mPrecision']) |
|
|
256 |
assert not np.isnan(eval_results['mRecall']) |
|
|
257 |
|
|
|
258 |
# test evaluation with pre-eval and the dataset.CLASSES is necessary |
|
|
259 |
train_dataset.CLASSES = tuple(['a'] * 7) |
|
|
260 |
pseudo_results = [] |
|
|
261 |
for idx in range(len(train_dataset)): |
|
|
262 |
h, w = gt_seg_maps[idx].shape |
|
|
263 |
pseudo_result = np.random.randint(low=0, high=7, size=(h, w)) |
|
|
264 |
pseudo_results.extend(train_dataset.pre_eval(pseudo_result, idx)) |
|
|
265 |
eval_results = train_dataset.evaluate(pseudo_results, metric=['mIoU']) |
|
|
266 |
assert isinstance(eval_results, dict) |
|
|
267 |
assert 'mIoU' in eval_results |
|
|
268 |
assert 'mAcc' in eval_results |
|
|
269 |
assert 'aAcc' in eval_results |
|
|
270 |
|
|
|
271 |
eval_results = train_dataset.evaluate(pseudo_results, metric='mDice') |
|
|
272 |
assert isinstance(eval_results, dict) |
|
|
273 |
assert 'mDice' in eval_results |
|
|
274 |
assert 'mAcc' in eval_results |
|
|
275 |
assert 'aAcc' in eval_results |
|
|
276 |
|
|
|
277 |
eval_results = train_dataset.evaluate(pseudo_results, metric='mFscore') |
|
|
278 |
assert isinstance(eval_results, dict) |
|
|
279 |
assert 'mRecall' in eval_results |
|
|
280 |
assert 'mPrecision' in eval_results |
|
|
281 |
assert 'mFscore' in eval_results |
|
|
282 |
assert 'aAcc' in eval_results |
|
|
283 |
|
|
|
284 |
eval_results = train_dataset.evaluate( |
|
|
285 |
pseudo_results, metric=['mIoU', 'mDice', 'mFscore']) |
|
|
286 |
assert isinstance(eval_results, dict) |
|
|
287 |
assert 'mIoU' in eval_results |
|
|
288 |
assert 'mDice' in eval_results |
|
|
289 |
assert 'mAcc' in eval_results |
|
|
290 |
assert 'aAcc' in eval_results |
|
|
291 |
assert 'mFscore' in eval_results |
|
|
292 |
assert 'mPrecision' in eval_results |
|
|
293 |
assert 'mRecall' in eval_results |
|
|
294 |
|
|
|
295 |
assert not np.isnan(eval_results['mIoU']) |
|
|
296 |
assert not np.isnan(eval_results['mDice']) |
|
|
297 |
assert not np.isnan(eval_results['mAcc']) |
|
|
298 |
assert not np.isnan(eval_results['aAcc']) |
|
|
299 |
assert not np.isnan(eval_results['mFscore']) |
|
|
300 |
assert not np.isnan(eval_results['mPrecision']) |
|
|
301 |
assert not np.isnan(eval_results['mRecall']) |
|
|
302 |
|
|
|
303 |
|
|
|
304 |
@pytest.mark.parametrize('separate_eval', [True, False]) |
|
|
305 |
def test_eval_concat_custom_dataset(separate_eval): |
|
|
306 |
img_norm_cfg = dict( |
|
|
307 |
mean=[123.675, 116.28, 103.53], |
|
|
308 |
std=[58.395, 57.12, 57.375], |
|
|
309 |
to_rgb=True) |
|
|
310 |
test_pipeline = [ |
|
|
311 |
dict(type='LoadImageFromFile'), |
|
|
312 |
dict( |
|
|
313 |
type='MultiScaleFlipAug', |
|
|
314 |
img_scale=(128, 256), |
|
|
315 |
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], |
|
|
316 |
flip=False, |
|
|
317 |
transforms=[ |
|
|
318 |
dict(type='Resize', keep_ratio=True), |
|
|
319 |
dict(type='RandomFlip'), |
|
|
320 |
dict(type='Normalize', **img_norm_cfg), |
|
|
321 |
dict(type='ImageToTensor', keys=['img']), |
|
|
322 |
dict(type='Collect', keys=['img']), |
|
|
323 |
]) |
|
|
324 |
] |
|
|
325 |
data_root = osp.join(osp.dirname(__file__), '../data/pseudo_dataset') |
|
|
326 |
img_dir = 'imgs/' |
|
|
327 |
ann_dir = 'gts/' |
|
|
328 |
|
|
|
329 |
cfg1 = dict( |
|
|
330 |
type='CustomDataset', |
|
|
331 |
pipeline=test_pipeline, |
|
|
332 |
data_root=data_root, |
|
|
333 |
img_dir=img_dir, |
|
|
334 |
ann_dir=ann_dir, |
|
|
335 |
img_suffix='img.jpg', |
|
|
336 |
seg_map_suffix='gt.png', |
|
|
337 |
classes=tuple(['a'] * 7)) |
|
|
338 |
dataset1 = build_dataset(cfg1) |
|
|
339 |
assert len(dataset1) == 5 |
|
|
340 |
# get gt seg map |
|
|
341 |
gt_seg_maps = dataset1.get_gt_seg_maps(efficient_test=True) |
|
|
342 |
assert isinstance(gt_seg_maps, Generator) |
|
|
343 |
gt_seg_maps = list(gt_seg_maps) |
|
|
344 |
assert len(gt_seg_maps) == 5 |
|
|
345 |
|
|
|
346 |
# test past evaluation |
|
|
347 |
pseudo_results = [] |
|
|
348 |
for gt_seg_map in gt_seg_maps: |
|
|
349 |
h, w = gt_seg_map.shape |
|
|
350 |
pseudo_results.append(np.random.randint(low=0, high=7, size=(h, w))) |
|
|
351 |
eval_results1 = dataset1.evaluate( |
|
|
352 |
pseudo_results, metric=['mIoU', 'mDice', 'mFscore']) |
|
|
353 |
|
|
|
354 |
# We use same dir twice for simplicity |
|
|
355 |
# with ann_dir |
|
|
356 |
cfg2 = dict( |
|
|
357 |
type='CustomDataset', |
|
|
358 |
pipeline=test_pipeline, |
|
|
359 |
data_root=data_root, |
|
|
360 |
img_dir=[img_dir, img_dir], |
|
|
361 |
ann_dir=[ann_dir, ann_dir], |
|
|
362 |
img_suffix='img.jpg', |
|
|
363 |
seg_map_suffix='gt.png', |
|
|
364 |
classes=tuple(['a'] * 7), |
|
|
365 |
separate_eval=separate_eval) |
|
|
366 |
dataset2 = build_dataset(cfg2) |
|
|
367 |
assert isinstance(dataset2, ConcatDataset) |
|
|
368 |
assert len(dataset2) == 10 |
|
|
369 |
|
|
|
370 |
eval_results2 = dataset2.evaluate( |
|
|
371 |
pseudo_results * 2, metric=['mIoU', 'mDice', 'mFscore']) |
|
|
372 |
|
|
|
373 |
if separate_eval: |
|
|
374 |
assert eval_results1['mIoU'] == eval_results2[ |
|
|
375 |
'0_mIoU'] == eval_results2['1_mIoU'] |
|
|
376 |
assert eval_results1['mDice'] == eval_results2[ |
|
|
377 |
'0_mDice'] == eval_results2['1_mDice'] |
|
|
378 |
assert eval_results1['mAcc'] == eval_results2[ |
|
|
379 |
'0_mAcc'] == eval_results2['1_mAcc'] |
|
|
380 |
assert eval_results1['aAcc'] == eval_results2[ |
|
|
381 |
'0_aAcc'] == eval_results2['1_aAcc'] |
|
|
382 |
assert eval_results1['mFscore'] == eval_results2[ |
|
|
383 |
'0_mFscore'] == eval_results2['1_mFscore'] |
|
|
384 |
assert eval_results1['mPrecision'] == eval_results2[ |
|
|
385 |
'0_mPrecision'] == eval_results2['1_mPrecision'] |
|
|
386 |
assert eval_results1['mRecall'] == eval_results2[ |
|
|
387 |
'0_mRecall'] == eval_results2['1_mRecall'] |
|
|
388 |
else: |
|
|
389 |
assert eval_results1['mIoU'] == eval_results2['mIoU'] |
|
|
390 |
assert eval_results1['mDice'] == eval_results2['mDice'] |
|
|
391 |
assert eval_results1['mAcc'] == eval_results2['mAcc'] |
|
|
392 |
assert eval_results1['aAcc'] == eval_results2['aAcc'] |
|
|
393 |
assert eval_results1['mFscore'] == eval_results2['mFscore'] |
|
|
394 |
assert eval_results1['mPrecision'] == eval_results2['mPrecision'] |
|
|
395 |
assert eval_results1['mRecall'] == eval_results2['mRecall'] |
|
|
396 |
|
|
|
397 |
# test get dataset_idx and sample_idx from ConcateDataset |
|
|
398 |
dataset_idx, sample_idx = dataset2.get_dataset_idx_and_sample_idx(3) |
|
|
399 |
assert dataset_idx == 0 |
|
|
400 |
assert sample_idx == 3 |
|
|
401 |
|
|
|
402 |
dataset_idx, sample_idx = dataset2.get_dataset_idx_and_sample_idx(7) |
|
|
403 |
assert dataset_idx == 1 |
|
|
404 |
assert sample_idx == 2 |
|
|
405 |
|
|
|
406 |
dataset_idx, sample_idx = dataset2.get_dataset_idx_and_sample_idx(-7) |
|
|
407 |
assert dataset_idx == 0 |
|
|
408 |
assert sample_idx == 3 |
|
|
409 |
|
|
|
410 |
# test negative indice exceed length of dataset |
|
|
411 |
with pytest.raises(ValueError): |
|
|
412 |
dataset_idx, sample_idx = dataset2.get_dataset_idx_and_sample_idx(-11) |
|
|
413 |
|
|
|
414 |
# test negative indice value |
|
|
415 |
indice = -6 |
|
|
416 |
dataset_idx1, sample_idx1 = dataset2.get_dataset_idx_and_sample_idx(indice) |
|
|
417 |
dataset_idx2, sample_idx2 = dataset2.get_dataset_idx_and_sample_idx( |
|
|
418 |
len(dataset2) + indice) |
|
|
419 |
assert dataset_idx1 == dataset_idx2 |
|
|
420 |
assert sample_idx1 == sample_idx2 |
|
|
421 |
|
|
|
422 |
# test evaluation with pre-eval and the dataset.CLASSES is necessary |
|
|
423 |
pseudo_results = [] |
|
|
424 |
eval_results1 = [] |
|
|
425 |
for idx in range(len(dataset1)): |
|
|
426 |
h, w = gt_seg_maps[idx].shape |
|
|
427 |
pseudo_result = np.random.randint(low=0, high=7, size=(h, w)) |
|
|
428 |
pseudo_results.append(pseudo_result) |
|
|
429 |
eval_results1.extend(dataset1.pre_eval(pseudo_result, idx)) |
|
|
430 |
|
|
|
431 |
assert len(eval_results1) == len(dataset1) |
|
|
432 |
assert isinstance(eval_results1[0], tuple) |
|
|
433 |
assert len(eval_results1[0]) == 4 |
|
|
434 |
assert isinstance(eval_results1[0][0], torch.Tensor) |
|
|
435 |
|
|
|
436 |
eval_results1 = dataset1.evaluate( |
|
|
437 |
eval_results1, metric=['mIoU', 'mDice', 'mFscore']) |
|
|
438 |
|
|
|
439 |
pseudo_results = pseudo_results * 2 |
|
|
440 |
eval_results2 = [] |
|
|
441 |
for idx in range(len(dataset2)): |
|
|
442 |
eval_results2.extend(dataset2.pre_eval(pseudo_results[idx], idx)) |
|
|
443 |
|
|
|
444 |
assert len(eval_results2) == len(dataset2) |
|
|
445 |
assert isinstance(eval_results2[0], tuple) |
|
|
446 |
assert len(eval_results2[0]) == 4 |
|
|
447 |
assert isinstance(eval_results2[0][0], torch.Tensor) |
|
|
448 |
|
|
|
449 |
eval_results2 = dataset2.evaluate( |
|
|
450 |
eval_results2, metric=['mIoU', 'mDice', 'mFscore']) |
|
|
451 |
|
|
|
452 |
if separate_eval: |
|
|
453 |
assert eval_results1['mIoU'] == eval_results2[ |
|
|
454 |
'0_mIoU'] == eval_results2['1_mIoU'] |
|
|
455 |
assert eval_results1['mDice'] == eval_results2[ |
|
|
456 |
'0_mDice'] == eval_results2['1_mDice'] |
|
|
457 |
assert eval_results1['mAcc'] == eval_results2[ |
|
|
458 |
'0_mAcc'] == eval_results2['1_mAcc'] |
|
|
459 |
assert eval_results1['aAcc'] == eval_results2[ |
|
|
460 |
'0_aAcc'] == eval_results2['1_aAcc'] |
|
|
461 |
assert eval_results1['mFscore'] == eval_results2[ |
|
|
462 |
'0_mFscore'] == eval_results2['1_mFscore'] |
|
|
463 |
assert eval_results1['mPrecision'] == eval_results2[ |
|
|
464 |
'0_mPrecision'] == eval_results2['1_mPrecision'] |
|
|
465 |
assert eval_results1['mRecall'] == eval_results2[ |
|
|
466 |
'0_mRecall'] == eval_results2['1_mRecall'] |
|
|
467 |
else: |
|
|
468 |
assert eval_results1['mIoU'] == eval_results2['mIoU'] |
|
|
469 |
assert eval_results1['mDice'] == eval_results2['mDice'] |
|
|
470 |
assert eval_results1['mAcc'] == eval_results2['mAcc'] |
|
|
471 |
assert eval_results1['aAcc'] == eval_results2['aAcc'] |
|
|
472 |
assert eval_results1['mFscore'] == eval_results2['mFscore'] |
|
|
473 |
assert eval_results1['mPrecision'] == eval_results2['mPrecision'] |
|
|
474 |
assert eval_results1['mRecall'] == eval_results2['mRecall'] |
|
|
475 |
|
|
|
476 |
# test batch_indices for pre eval |
|
|
477 |
eval_results2 = dataset2.pre_eval(pseudo_results, |
|
|
478 |
list(range(len(pseudo_results)))) |
|
|
479 |
|
|
|
480 |
assert len(eval_results2) == len(dataset2) |
|
|
481 |
assert isinstance(eval_results2[0], tuple) |
|
|
482 |
assert len(eval_results2[0]) == 4 |
|
|
483 |
assert isinstance(eval_results2[0][0], torch.Tensor) |
|
|
484 |
|
|
|
485 |
eval_results2 = dataset2.evaluate( |
|
|
486 |
eval_results2, metric=['mIoU', 'mDice', 'mFscore']) |
|
|
487 |
|
|
|
488 |
if separate_eval: |
|
|
489 |
assert eval_results1['mIoU'] == eval_results2[ |
|
|
490 |
'0_mIoU'] == eval_results2['1_mIoU'] |
|
|
491 |
assert eval_results1['mDice'] == eval_results2[ |
|
|
492 |
'0_mDice'] == eval_results2['1_mDice'] |
|
|
493 |
assert eval_results1['mAcc'] == eval_results2[ |
|
|
494 |
'0_mAcc'] == eval_results2['1_mAcc'] |
|
|
495 |
assert eval_results1['aAcc'] == eval_results2[ |
|
|
496 |
'0_aAcc'] == eval_results2['1_aAcc'] |
|
|
497 |
assert eval_results1['mFscore'] == eval_results2[ |
|
|
498 |
'0_mFscore'] == eval_results2['1_mFscore'] |
|
|
499 |
assert eval_results1['mPrecision'] == eval_results2[ |
|
|
500 |
'0_mPrecision'] == eval_results2['1_mPrecision'] |
|
|
501 |
assert eval_results1['mRecall'] == eval_results2[ |
|
|
502 |
'0_mRecall'] == eval_results2['1_mRecall'] |
|
|
503 |
else: |
|
|
504 |
assert eval_results1['mIoU'] == eval_results2['mIoU'] |
|
|
505 |
assert eval_results1['mDice'] == eval_results2['mDice'] |
|
|
506 |
assert eval_results1['mAcc'] == eval_results2['mAcc'] |
|
|
507 |
assert eval_results1['aAcc'] == eval_results2['aAcc'] |
|
|
508 |
assert eval_results1['mFscore'] == eval_results2['mFscore'] |
|
|
509 |
assert eval_results1['mPrecision'] == eval_results2['mPrecision'] |
|
|
510 |
assert eval_results1['mRecall'] == eval_results2['mRecall'] |
|
|
511 |
|
|
|
512 |
|
|
|
513 |
def test_ade(): |
|
|
514 |
test_dataset = ADE20KDataset( |
|
|
515 |
pipeline=[], |
|
|
516 |
img_dir=osp.join(osp.dirname(__file__), '../data/pseudo_dataset/imgs')) |
|
|
517 |
assert len(test_dataset) == 5 |
|
|
518 |
|
|
|
519 |
# Test format_results |
|
|
520 |
pseudo_results = [] |
|
|
521 |
for _ in range(len(test_dataset)): |
|
|
522 |
h, w = (2, 2) |
|
|
523 |
pseudo_results.append(np.random.randint(low=0, high=7, size=(h, w))) |
|
|
524 |
|
|
|
525 |
file_paths = test_dataset.format_results(pseudo_results, '.format_ade') |
|
|
526 |
assert len(file_paths) == len(test_dataset) |
|
|
527 |
temp = np.array(Image.open(file_paths[0])) |
|
|
528 |
assert np.allclose(temp, pseudo_results[0] + 1) |
|
|
529 |
|
|
|
530 |
shutil.rmtree('.format_ade') |
|
|
531 |
|
|
|
532 |
|
|
|
533 |
@pytest.mark.parametrize('separate_eval', [True, False]) |
|
|
534 |
def test_concat_ade(separate_eval): |
|
|
535 |
test_dataset = ADE20KDataset( |
|
|
536 |
pipeline=[], |
|
|
537 |
img_dir=osp.join(osp.dirname(__file__), '../data/pseudo_dataset/imgs')) |
|
|
538 |
assert len(test_dataset) == 5 |
|
|
539 |
|
|
|
540 |
concat_dataset = ConcatDataset([test_dataset, test_dataset], |
|
|
541 |
separate_eval=separate_eval) |
|
|
542 |
assert len(concat_dataset) == 10 |
|
|
543 |
# Test format_results |
|
|
544 |
pseudo_results = [] |
|
|
545 |
for _ in range(len(concat_dataset)): |
|
|
546 |
h, w = (2, 2) |
|
|
547 |
pseudo_results.append(np.random.randint(low=0, high=7, size=(h, w))) |
|
|
548 |
|
|
|
549 |
# test format per image |
|
|
550 |
file_paths = [] |
|
|
551 |
for i in range(len(pseudo_results)): |
|
|
552 |
file_paths.extend( |
|
|
553 |
concat_dataset.format_results([pseudo_results[i]], |
|
|
554 |
'.format_ade', |
|
|
555 |
indices=[i])) |
|
|
556 |
assert len(file_paths) == len(concat_dataset) |
|
|
557 |
temp = np.array(Image.open(file_paths[0])) |
|
|
558 |
assert np.allclose(temp, pseudo_results[0] + 1) |
|
|
559 |
|
|
|
560 |
shutil.rmtree('.format_ade') |
|
|
561 |
|
|
|
562 |
# test default argument |
|
|
563 |
file_paths = concat_dataset.format_results(pseudo_results, '.format_ade') |
|
|
564 |
assert len(file_paths) == len(concat_dataset) |
|
|
565 |
temp = np.array(Image.open(file_paths[0])) |
|
|
566 |
assert np.allclose(temp, pseudo_results[0] + 1) |
|
|
567 |
|
|
|
568 |
shutil.rmtree('.format_ade') |
|
|
569 |
|
|
|
570 |
|
|
|
571 |
def test_cityscapes(): |
|
|
572 |
test_dataset = CityscapesDataset( |
|
|
573 |
pipeline=[], |
|
|
574 |
img_dir=osp.join( |
|
|
575 |
osp.dirname(__file__), |
|
|
576 |
'../data/pseudo_cityscapes_dataset/leftImg8bit'), |
|
|
577 |
ann_dir=osp.join( |
|
|
578 |
osp.dirname(__file__), '../data/pseudo_cityscapes_dataset/gtFine')) |
|
|
579 |
assert len(test_dataset) == 1 |
|
|
580 |
|
|
|
581 |
gt_seg_maps = list(test_dataset.get_gt_seg_maps()) |
|
|
582 |
|
|
|
583 |
# Test format_results |
|
|
584 |
pseudo_results = [] |
|
|
585 |
for idx in range(len(test_dataset)): |
|
|
586 |
h, w = gt_seg_maps[idx].shape |
|
|
587 |
pseudo_results.append(np.random.randint(low=0, high=19, size=(h, w))) |
|
|
588 |
|
|
|
589 |
file_paths = test_dataset.format_results(pseudo_results, '.format_city') |
|
|
590 |
assert len(file_paths) == len(test_dataset) |
|
|
591 |
temp = np.array(Image.open(file_paths[0])) |
|
|
592 |
assert np.allclose(temp, |
|
|
593 |
test_dataset._convert_to_label_id(pseudo_results[0])) |
|
|
594 |
|
|
|
595 |
# Test cityscapes evaluate |
|
|
596 |
|
|
|
597 |
test_dataset.evaluate( |
|
|
598 |
pseudo_results, metric='cityscapes', imgfile_prefix='.format_city') |
|
|
599 |
|
|
|
600 |
shutil.rmtree('.format_city') |
|
|
601 |
|
|
|
602 |
|
|
|
603 |
@pytest.mark.parametrize('separate_eval', [True, False]) |
|
|
604 |
def test_concat_cityscapes(separate_eval): |
|
|
605 |
cityscape_dataset = CityscapesDataset( |
|
|
606 |
pipeline=[], |
|
|
607 |
img_dir=osp.join( |
|
|
608 |
osp.dirname(__file__), |
|
|
609 |
'../data/pseudo_cityscapes_dataset/leftImg8bit'), |
|
|
610 |
ann_dir=osp.join( |
|
|
611 |
osp.dirname(__file__), '../data/pseudo_cityscapes_dataset/gtFine')) |
|
|
612 |
assert len(cityscape_dataset) == 1 |
|
|
613 |
with pytest.raises(NotImplementedError): |
|
|
614 |
_ = ConcatDataset([cityscape_dataset, cityscape_dataset], |
|
|
615 |
separate_eval=separate_eval) |
|
|
616 |
ade_dataset = ADE20KDataset( |
|
|
617 |
pipeline=[], |
|
|
618 |
img_dir=osp.join(osp.dirname(__file__), '../data/pseudo_dataset/imgs')) |
|
|
619 |
assert len(ade_dataset) == 5 |
|
|
620 |
with pytest.raises(NotImplementedError): |
|
|
621 |
_ = ConcatDataset([cityscape_dataset, ade_dataset], |
|
|
622 |
separate_eval=separate_eval) |
|
|
623 |
|
|
|
624 |
|
|
|
625 |
def test_loveda(): |
|
|
626 |
test_dataset = LoveDADataset( |
|
|
627 |
pipeline=[], |
|
|
628 |
img_dir=osp.join( |
|
|
629 |
osp.dirname(__file__), '../data/pseudo_loveda_dataset/img_dir'), |
|
|
630 |
ann_dir=osp.join( |
|
|
631 |
osp.dirname(__file__), '../data/pseudo_loveda_dataset/ann_dir')) |
|
|
632 |
assert len(test_dataset) == 3 |
|
|
633 |
|
|
|
634 |
gt_seg_maps = list(test_dataset.get_gt_seg_maps()) |
|
|
635 |
|
|
|
636 |
# Test format_results |
|
|
637 |
pseudo_results = [] |
|
|
638 |
for idx in range(len(test_dataset)): |
|
|
639 |
h, w = gt_seg_maps[idx].shape |
|
|
640 |
pseudo_results.append(np.random.randint(low=0, high=7, size=(h, w))) |
|
|
641 |
file_paths = test_dataset.format_results(pseudo_results, '.format_loveda') |
|
|
642 |
assert len(file_paths) == len(test_dataset) |
|
|
643 |
# Test loveda evaluate |
|
|
644 |
|
|
|
645 |
test_dataset.evaluate( |
|
|
646 |
pseudo_results, metric='mIoU', imgfile_prefix='.format_loveda') |
|
|
647 |
|
|
|
648 |
shutil.rmtree('.format_loveda') |
|
|
649 |
|
|
|
650 |
|
|
|
651 |
@patch('mmseg.datasets.CustomDataset.load_annotations', MagicMock) |
|
|
652 |
@patch('mmseg.datasets.CustomDataset.__getitem__', |
|
|
653 |
MagicMock(side_effect=lambda idx: idx)) |
|
|
654 |
@pytest.mark.parametrize('dataset, classes', [ |
|
|
655 |
('ADE20KDataset', ('wall', 'building')), |
|
|
656 |
('CityscapesDataset', ('road', 'sidewalk')), |
|
|
657 |
('CustomDataset', ('bus', 'car')), |
|
|
658 |
('PascalVOCDataset', ('aeroplane', 'bicycle')), |
|
|
659 |
]) |
|
|
660 |
def test_custom_classes_override_default(dataset, classes): |
|
|
661 |
|
|
|
662 |
dataset_class = DATASETS.get(dataset) |
|
|
663 |
|
|
|
664 |
original_classes = dataset_class.CLASSES |
|
|
665 |
|
|
|
666 |
# Test setting classes as a tuple |
|
|
667 |
custom_dataset = dataset_class( |
|
|
668 |
pipeline=[], |
|
|
669 |
img_dir=MagicMock(), |
|
|
670 |
split=MagicMock(), |
|
|
671 |
classes=classes, |
|
|
672 |
test_mode=True) |
|
|
673 |
|
|
|
674 |
assert custom_dataset.CLASSES != original_classes |
|
|
675 |
assert custom_dataset.CLASSES == classes |
|
|
676 |
|
|
|
677 |
# Test setting classes as a list |
|
|
678 |
custom_dataset = dataset_class( |
|
|
679 |
pipeline=[], |
|
|
680 |
img_dir=MagicMock(), |
|
|
681 |
split=MagicMock(), |
|
|
682 |
classes=list(classes), |
|
|
683 |
test_mode=True) |
|
|
684 |
|
|
|
685 |
assert custom_dataset.CLASSES != original_classes |
|
|
686 |
assert custom_dataset.CLASSES == list(classes) |
|
|
687 |
|
|
|
688 |
# Test overriding not a subset |
|
|
689 |
custom_dataset = dataset_class( |
|
|
690 |
pipeline=[], |
|
|
691 |
img_dir=MagicMock(), |
|
|
692 |
split=MagicMock(), |
|
|
693 |
classes=[classes[0]], |
|
|
694 |
test_mode=True) |
|
|
695 |
|
|
|
696 |
assert custom_dataset.CLASSES != original_classes |
|
|
697 |
assert custom_dataset.CLASSES == [classes[0]] |
|
|
698 |
|
|
|
699 |
# Test default behavior |
|
|
700 |
if dataset_class is CustomDataset: |
|
|
701 |
with pytest.raises(AssertionError): |
|
|
702 |
custom_dataset = dataset_class( |
|
|
703 |
pipeline=[], |
|
|
704 |
img_dir=MagicMock(), |
|
|
705 |
split=MagicMock(), |
|
|
706 |
classes=None, |
|
|
707 |
test_mode=True) |
|
|
708 |
else: |
|
|
709 |
custom_dataset = dataset_class( |
|
|
710 |
pipeline=[], |
|
|
711 |
img_dir=MagicMock(), |
|
|
712 |
split=MagicMock(), |
|
|
713 |
classes=None, |
|
|
714 |
test_mode=True) |
|
|
715 |
|
|
|
716 |
assert custom_dataset.CLASSES == original_classes |
|
|
717 |
|
|
|
718 |
|
|
|
719 |
@patch('mmseg.datasets.CustomDataset.load_annotations', MagicMock) |
|
|
720 |
@patch('mmseg.datasets.CustomDataset.__getitem__', |
|
|
721 |
MagicMock(side_effect=lambda idx: idx)) |
|
|
722 |
def test_custom_dataset_random_palette_is_generated(): |
|
|
723 |
dataset = CustomDataset( |
|
|
724 |
pipeline=[], |
|
|
725 |
img_dir=MagicMock(), |
|
|
726 |
split=MagicMock(), |
|
|
727 |
classes=('bus', 'car'), |
|
|
728 |
test_mode=True) |
|
|
729 |
assert len(dataset.PALETTE) == 2 |
|
|
730 |
for class_color in dataset.PALETTE: |
|
|
731 |
assert len(class_color) == 3 |
|
|
732 |
assert all(x >= 0 and x <= 255 for x in class_color) |
|
|
733 |
|
|
|
734 |
|
|
|
735 |
@patch('mmseg.datasets.CustomDataset.load_annotations', MagicMock) |
|
|
736 |
@patch('mmseg.datasets.CustomDataset.__getitem__', |
|
|
737 |
MagicMock(side_effect=lambda idx: idx)) |
|
|
738 |
def test_custom_dataset_custom_palette(): |
|
|
739 |
dataset = CustomDataset( |
|
|
740 |
pipeline=[], |
|
|
741 |
img_dir=MagicMock(), |
|
|
742 |
split=MagicMock(), |
|
|
743 |
classes=('bus', 'car'), |
|
|
744 |
palette=[[100, 100, 100], [200, 200, 200]], |
|
|
745 |
test_mode=True) |
|
|
746 |
assert tuple(dataset.PALETTE) == tuple([[100, 100, 100], [200, 200, 200]]) |