|
a |
|
b/occupy.py |
|
|
1 |
import os; import torch |
|
|
2 |
|
|
|
3 |
def occumpy_mem(cuda_device): |
|
|
4 |
def check_mem(cuda_device): |
|
|
5 |
devices_info = os.popen('"/usr/bin/nvidia-smi" --query-gpu=memory.total,memory.used --format=csv,nounits,noheader').read().strip().split("\n") |
|
|
6 |
total, used = devices_info[int(cuda_device)].split(',') |
|
|
7 |
return total,used |
|
|
8 |
total, used = check_mem(cuda_device) |
|
|
9 |
total = int(total) |
|
|
10 |
used = int(used) |
|
|
11 |
max_mem = int(total * 0.85) |
|
|
12 |
block_mem = max_mem - used |
|
|
13 |
x = torch.FloatTensor(256,1024,block_mem).to(torch.device(f"cuda:{cuda_device}")) |
|
|
14 |
del x |
|
|
15 |
|
|
|
16 |
occumpy_mem('0') |
|
|
17 |
occumpy_mem('1') |