|
a |
|
b/monai/multilabel_train.py |
|
|
1 |
import argparse |
|
|
2 |
import gc |
|
|
3 |
import importlib |
|
|
4 |
import os |
|
|
5 |
import sys |
|
|
6 |
import shutil |
|
|
7 |
|
|
|
8 |
import numpy as np |
|
|
9 |
import pandas as pd |
|
|
10 |
import torch |
|
|
11 |
from torch import nn |
|
|
12 |
from monai.handlers.utils import from_engine |
|
|
13 |
from monai.inferers import sliding_window_inference |
|
|
14 |
from monai.data import decollate_batch |
|
|
15 |
from torch.cuda.amp import GradScaler, autocast |
|
|
16 |
from tqdm import tqdm |
|
|
17 |
|
|
|
18 |
from utils import * |
|
|
19 |
|
|
|
20 |
from monai.transforms import ( |
|
|
21 |
Compose, |
|
|
22 |
Activations, |
|
|
23 |
AsDiscrete, |
|
|
24 |
Activationsd, |
|
|
25 |
AsDiscreted, |
|
|
26 |
KeepLargestConnectedComponentd, |
|
|
27 |
Invertd, |
|
|
28 |
LoadImage, |
|
|
29 |
Transposed, |
|
|
30 |
) |
|
|
31 |
import json |
|
|
32 |
from metric import HausdorffScore |
|
|
33 |
from monai.utils import set_determinism |
|
|
34 |
from monai.losses import DiceLoss, DiceCELoss |
|
|
35 |
from monai.networks.nets import UNet, SegResNet, DynUnet |
|
|
36 |
from monai.optimizers import Novograd |
|
|
37 |
from monai.metrics import DiceMetric |
|
|
38 |
torch.backends.cudnn.enabled = True |
|
|
39 |
torch.backends.cudnn.benchmark = True |
|
|
40 |
|
|
|
41 |
|
|
|
42 |
def main(cfg): |
|
|
43 |
|
|
|
44 |
# data sequence |
|
|
45 |
if cfg.fold != -1: |
|
|
46 |
cfg.data_json_dir = cfg.data_dir + f"dataset_3d_fold_{cfg.fold}.json" |
|
|
47 |
else: |
|
|
48 |
cfg.data_json_dir = cfg.data_dir + f"dataset_3d_all.json" |
|
|
49 |
|
|
|
50 |
with open(cfg.data_json_dir, "r") as f: |
|
|
51 |
cfg.data_json = json.load(f) |
|
|
52 |
|
|
|
53 |
if cfg.fold != -1: |
|
|
54 |
fold_dir = f"fold{cfg.fold}" |
|
|
55 |
else: |
|
|
56 |
fold_dir = "all" |
|
|
57 |
os.makedirs(str(cfg.output_dir + f"/{fold_dir}/"), exist_ok=True) |
|
|
58 |
|
|
|
59 |
# # set random seed |
|
|
60 |
# set_determinism(cfg.seed) |
|
|
61 |
|
|
|
62 |
train_dataset = get_train_dataset(cfg) |
|
|
63 |
train_dataloader = get_train_dataloader(train_dataset, cfg) |
|
|
64 |
|
|
|
65 |
val_dataset = get_val_dataset(cfg) |
|
|
66 |
val_dataloader = get_val_dataloader(val_dataset, cfg) |
|
|
67 |
|
|
|
68 |
print(f"run fold {cfg.fold}, train len: {len(train_dataset)}") |
|
|
69 |
|
|
|
70 |
if cfg.model_type.startswith("segres"): |
|
|
71 |
model = SegResNet( |
|
|
72 |
spatial_dims = 3, |
|
|
73 |
in_channels = 1, |
|
|
74 |
out_channels = 3, |
|
|
75 |
init_filters = int(cfg.model_type.replace("segres", "")), |
|
|
76 |
norm = "BATCH", |
|
|
77 |
act = "PRELU" |
|
|
78 |
).to(cfg.device) |
|
|
79 |
|
|
|
80 |
|
|
|
81 |
print(cfg.weights) |
|
|
82 |
if cfg.weights is not None: |
|
|
83 |
stt = torch.load(cfg.weights, map_location = "cpu") |
|
|
84 |
if "model" in stt: |
|
|
85 |
stt = stt["model"] |
|
|
86 |
if "state_dict" in stt: |
|
|
87 |
stt = stt["state_dict"] |
|
|
88 |
del stt["out.conv.conv.weight"], stt["out.conv.conv.bias"] |
|
|
89 |
model.load_state_dict(stt, strict = False) |
|
|
90 |
print(f"weights from: {cfg.weights} are loaded.") |
|
|
91 |
|
|
|
92 |
# set optimizer, lr scheduler |
|
|
93 |
total_steps = len(train_dataset) |
|
|
94 |
optimizer = get_optimizer(model, cfg) |
|
|
95 |
# optimizer = Novograd(model.parameters(), cfg.lr) |
|
|
96 |
scheduler = get_scheduler(cfg, optimizer, total_steps) |
|
|
97 |
|
|
|
98 |
seg_loss_func = DiceBceMultilabelLoss(w_dice=cfg.w_dice, w_bce=1-cfg.w_dice) |
|
|
99 |
# seg_loss_func = DiceLoss(sigmoid=True, smooth_nr=0.01, smooth_dr=0.01, include_background=True, batch=True) |
|
|
100 |
dice_metric = DiceMetric(reduction="mean") |
|
|
101 |
hausdorff_metric = HausdorffScore(reduction="mean") |
|
|
102 |
metric_function = [dice_metric, hausdorff_metric] |
|
|
103 |
|
|
|
104 |
post_pred = Compose([ |
|
|
105 |
Activations(sigmoid=True), |
|
|
106 |
AsDiscrete(threshold=0.5), |
|
|
107 |
]) |
|
|
108 |
|
|
|
109 |
# train and val loop |
|
|
110 |
step = 0 |
|
|
111 |
i = 0 |
|
|
112 |
if cfg.eval is True: |
|
|
113 |
best_val_metric = run_eval( |
|
|
114 |
model=model, |
|
|
115 |
val_dataloader=val_dataloader, |
|
|
116 |
post_pred=post_pred, |
|
|
117 |
metric_function=metric_function, |
|
|
118 |
seg_loss_func=seg_loss_func, |
|
|
119 |
cfg=cfg, |
|
|
120 |
epoch=0, |
|
|
121 |
) |
|
|
122 |
else: |
|
|
123 |
best_val_metric = 0.0 |
|
|
124 |
best_weights_name = "best_weights" |
|
|
125 |
for epoch in range(cfg.epochs): |
|
|
126 |
print("EPOCH:", epoch) |
|
|
127 |
gc.collect() |
|
|
128 |
if cfg.train is True: |
|
|
129 |
run_train( |
|
|
130 |
model=model, |
|
|
131 |
train_dataloader=train_dataloader, |
|
|
132 |
optimizer=optimizer, |
|
|
133 |
scheduler=scheduler, |
|
|
134 |
seg_loss_func=seg_loss_func, |
|
|
135 |
cfg=cfg, |
|
|
136 |
# writer=writer, |
|
|
137 |
epoch=epoch, |
|
|
138 |
step=step, |
|
|
139 |
iteration=i, |
|
|
140 |
) |
|
|
141 |
|
|
|
142 |
if (epoch + 1) % cfg.eval_epochs == 0 and cfg.eval is True and epoch > cfg.start_eval_epoch: |
|
|
143 |
val_metric = run_eval( |
|
|
144 |
model=model, |
|
|
145 |
val_dataloader=val_dataloader, |
|
|
146 |
post_pred=post_pred, |
|
|
147 |
metric_function=metric_function, |
|
|
148 |
seg_loss_func=seg_loss_func, |
|
|
149 |
cfg=cfg, |
|
|
150 |
epoch=epoch, |
|
|
151 |
) |
|
|
152 |
|
|
|
153 |
if val_metric > best_val_metric: |
|
|
154 |
print(f"Find better metric: val_metric {best_val_metric:.5} -> {val_metric:.5}") |
|
|
155 |
best_val_metric = val_metric |
|
|
156 |
checkpoint = create_checkpoint( |
|
|
157 |
model, |
|
|
158 |
optimizer, |
|
|
159 |
epoch, |
|
|
160 |
scheduler=scheduler, |
|
|
161 |
) |
|
|
162 |
torch.save( |
|
|
163 |
checkpoint, |
|
|
164 |
f"{cfg.output_dir}/{fold_dir}/{best_weights_name}.pth", |
|
|
165 |
) |
|
|
166 |
else: |
|
|
167 |
if cfg.load_best_weights is True: |
|
|
168 |
try: |
|
|
169 |
model.load_state_dict(torch.load(f"{cfg.output_dir}/{fold_dir}/{best_weights_name}.pth")["model"]) |
|
|
170 |
print(f"metric no improve, load the saved best weights with score: {best_val_metric}.") |
|
|
171 |
except: |
|
|
172 |
pass |
|
|
173 |
|
|
|
174 |
if (epoch + 1) == cfg.epochs: |
|
|
175 |
# save final best weights, with its distinct name in order to avoid mistakes. |
|
|
176 |
if os.path.exists(f"{cfg.output_dir}/{fold_dir}/{best_weights_name}.pth"): |
|
|
177 |
shutil.copyfile( |
|
|
178 |
f"{cfg.output_dir}/{fold_dir}/{best_weights_name}.pth", |
|
|
179 |
f"{cfg.output_dir}/{fold_dir}/{best_weights_name}_{best_val_metric:.4f}.pth", |
|
|
180 |
) |
|
|
181 |
|
|
|
182 |
torch.save( |
|
|
183 |
model.state_dict(), |
|
|
184 |
f"{cfg.output_dir}/{fold_dir}/last.pth", |
|
|
185 |
) |
|
|
186 |
|
|
|
187 |
|
|
|
188 |
def run_train( |
|
|
189 |
model, |
|
|
190 |
train_dataloader, |
|
|
191 |
optimizer, |
|
|
192 |
scheduler, |
|
|
193 |
seg_loss_func, |
|
|
194 |
cfg, |
|
|
195 |
# writer, |
|
|
196 |
epoch, |
|
|
197 |
step, |
|
|
198 |
iteration, |
|
|
199 |
): |
|
|
200 |
model.train() |
|
|
201 |
scaler = GradScaler() |
|
|
202 |
progress_bar = tqdm(range(len(train_dataloader))) |
|
|
203 |
tr_it = iter(train_dataloader) |
|
|
204 |
dataset_size = 0 |
|
|
205 |
running_loss = 0.0 |
|
|
206 |
|
|
|
207 |
for itr in progress_bar: |
|
|
208 |
iteration += 1 |
|
|
209 |
batch = next(tr_it) |
|
|
210 |
inputs, masks = ( |
|
|
211 |
batch["image"].to(cfg.device), |
|
|
212 |
batch["mask"].to(cfg.device), |
|
|
213 |
) |
|
|
214 |
|
|
|
215 |
step += cfg.batch_size |
|
|
216 |
|
|
|
217 |
if cfg.amp is True: |
|
|
218 |
with autocast(): |
|
|
219 |
outputs = model(inputs) |
|
|
220 |
loss = seg_loss_func(outputs, masks) |
|
|
221 |
else: |
|
|
222 |
outputs = model(inputs) |
|
|
223 |
loss = seg_loss_func(outputs, masks) |
|
|
224 |
if cfg.amp is True: |
|
|
225 |
scaler.scale(loss).backward() |
|
|
226 |
torch.nn.utils.clip_grad_norm_(model.parameters(), 12) |
|
|
227 |
scaler.step(optimizer) |
|
|
228 |
scaler.update() |
|
|
229 |
else: |
|
|
230 |
loss.backward() |
|
|
231 |
optimizer.step() |
|
|
232 |
|
|
|
233 |
optimizer.zero_grad() |
|
|
234 |
scheduler.step() |
|
|
235 |
|
|
|
236 |
running_loss += (loss.item() * cfg.batch_size) |
|
|
237 |
dataset_size += cfg.batch_size |
|
|
238 |
losses = running_loss / dataset_size |
|
|
239 |
progress_bar.set_description(f"loss: {losses:.4f} lr: {optimizer.param_groups[0]['lr']:.6f}") |
|
|
240 |
del batch, inputs, masks, outputs, loss |
|
|
241 |
print(f"Train loss: {losses:.4f}") |
|
|
242 |
torch.cuda.empty_cache() |
|
|
243 |
|
|
|
244 |
def run_eval(model, val_dataloader, post_pred, metric_function, seg_loss_func, cfg, epoch): |
|
|
245 |
|
|
|
246 |
model.eval() |
|
|
247 |
|
|
|
248 |
dice_metric, hausdorff_metric = metric_function |
|
|
249 |
|
|
|
250 |
progress_bar = tqdm(range(len(val_dataloader))) |
|
|
251 |
val_it = iter(val_dataloader) |
|
|
252 |
with torch.no_grad(): |
|
|
253 |
for itr in progress_bar: |
|
|
254 |
batch = next(val_it) |
|
|
255 |
val_inputs, val_masks = ( |
|
|
256 |
batch["image"].to(cfg.device), |
|
|
257 |
batch["mask"].to(cfg.device), |
|
|
258 |
) |
|
|
259 |
if cfg.val_amp is True: |
|
|
260 |
with autocast(): |
|
|
261 |
val_outputs = sliding_window_inference(val_inputs, cfg.roi_size, cfg.sw_batch_size, model) |
|
|
262 |
else: |
|
|
263 |
val_outputs = sliding_window_inference(val_inputs, cfg.roi_size, cfg.sw_batch_size, model) |
|
|
264 |
# cal metric |
|
|
265 |
if cfg.run_tta_val is True: |
|
|
266 |
tta_ct = 1 |
|
|
267 |
for dims in [[2],[3],[2,3]]: |
|
|
268 |
flip_val_outputs = sliding_window_inference(torch.flip(val_inputs, dims=dims), cfg.roi_size, cfg.sw_batch_size, model) |
|
|
269 |
val_outputs += torch.flip(flip_val_outputs, dims=dims) |
|
|
270 |
tta_ct += 1 |
|
|
271 |
|
|
|
272 |
val_outputs /= tta_ct |
|
|
273 |
|
|
|
274 |
val_outputs = [post_pred(i) for i in val_outputs] |
|
|
275 |
val_outputs = torch.stack(val_outputs) |
|
|
276 |
# metric is slice level put (n, c, h, w, d) to (n, d, c, h, w) to (n*d, c, h, w) |
|
|
277 |
val_outputs = val_outputs.permute([0, 4, 1, 2, 3]).flatten(0, 1) |
|
|
278 |
val_masks = val_masks.permute([0, 4, 1, 2, 3]).flatten(0, 1) |
|
|
279 |
|
|
|
280 |
hausdorff_metric(y_pred=val_outputs, y=val_masks) |
|
|
281 |
dice_metric(y_pred=val_outputs, y=val_masks) |
|
|
282 |
|
|
|
283 |
del val_outputs, val_inputs, val_masks, batch |
|
|
284 |
|
|
|
285 |
dice_score = dice_metric.aggregate().item() |
|
|
286 |
hausdorff_score = hausdorff_metric.aggregate().item() |
|
|
287 |
dice_metric.reset() |
|
|
288 |
hausdorff_metric.reset() |
|
|
289 |
|
|
|
290 |
all_score = dice_score * 0.4 + hausdorff_score * 0.6 |
|
|
291 |
print(f"dice_score: {dice_score} hausdorff_score: {hausdorff_score} all_score: {all_score}") |
|
|
292 |
torch.cuda.empty_cache() |
|
|
293 |
|
|
|
294 |
return all_score |
|
|
295 |
|
|
|
296 |
|
|
|
297 |
if __name__ == "__main__": |
|
|
298 |
|
|
|
299 |
sys.path.append("configs") |
|
|
300 |
|
|
|
301 |
parser = argparse.ArgumentParser(description="") |
|
|
302 |
|
|
|
303 |
parser.add_argument("-c", "--config", default="cfg_unet_multilabel", help="config filename") |
|
|
304 |
parser.add_argument("-f", "--fold", type=int, default=0, help="fold") |
|
|
305 |
parser.add_argument("-s", "--seed", type=int, default=20220421, help="seed") |
|
|
306 |
parser.add_argument("-w", "--weights", default=None, help="the path of weights") |
|
|
307 |
|
|
|
308 |
parser_args, _ = parser.parse_known_args(sys.argv) |
|
|
309 |
|
|
|
310 |
cfg = importlib.import_module(parser_args.config).cfg |
|
|
311 |
cfg.fold = parser_args.fold |
|
|
312 |
cfg.seed = parser_args.seed |
|
|
313 |
cfg.weights = parser_args.weights |
|
|
314 |
|
|
|
315 |
main(cfg) |