|
a |
|
b/monai/metric.py |
|
|
1 |
# Copyright (c) MONAI Consortium |
|
|
2 |
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
|
3 |
# you may not use this file except in compliance with the License. |
|
|
4 |
# You may obtain a copy of the License at |
|
|
5 |
# http://www.apache.org/licenses/LICENSE-2.0 |
|
|
6 |
# Unless required by applicable law or agreed to in writing, software |
|
|
7 |
# distributed under the License is distributed on an "AS IS" BASIS, |
|
|
8 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
|
9 |
# See the License for the specific language governing permissions and |
|
|
10 |
# limitations under the License. |
|
|
11 |
|
|
|
12 |
import numpy as np |
|
|
13 |
import torch |
|
|
14 |
|
|
|
15 |
from monai.metrics.utils import do_metric_reduction |
|
|
16 |
from monai.metrics.utils import get_mask_edges, get_surface_distance |
|
|
17 |
|
|
|
18 |
from monai.metrics import CumulativeIterationMetric |
|
|
19 |
|
|
|
20 |
|
|
|
21 |
class HausdorffScore(CumulativeIterationMetric): |
|
|
22 |
""" |
|
|
23 |
Modify MONAI's HausdorffDistanceMetric for Kaggle UW-Madison GI Tract Image Segmentation |
|
|
24 |
|
|
|
25 |
""" |
|
|
26 |
|
|
|
27 |
def __init__( |
|
|
28 |
self, |
|
|
29 |
reduction = "mean", |
|
|
30 |
) -> None: |
|
|
31 |
super().__init__() |
|
|
32 |
self.reduction = reduction |
|
|
33 |
|
|
|
34 |
def _compute_tensor(self, pred, gt): |
|
|
35 |
|
|
|
36 |
return compute_hausdorff_score(pred, gt) |
|
|
37 |
|
|
|
38 |
|
|
|
39 |
def aggregate(self): |
|
|
40 |
""" |
|
|
41 |
Execute reduction logic for the output of `compute_hausdorff_distance`. |
|
|
42 |
|
|
|
43 |
""" |
|
|
44 |
data = self.get_buffer() |
|
|
45 |
# do metric reduction |
|
|
46 |
f, _ = do_metric_reduction(data, self.reduction) |
|
|
47 |
return f |
|
|
48 |
|
|
|
49 |
def compute_directed_hausdorff(pred, gt, max_dist): |
|
|
50 |
if np.all(pred == gt): |
|
|
51 |
return 0.0 |
|
|
52 |
if np.sum(pred) == 0: |
|
|
53 |
return 1.0 |
|
|
54 |
if np.sum(gt) == 0: |
|
|
55 |
return 1.0 |
|
|
56 |
(edges_pred, edges_gt) = get_mask_edges(pred, gt) |
|
|
57 |
surface_distance = get_surface_distance(edges_pred, edges_gt, distance_metric="euclidean") |
|
|
58 |
if surface_distance.shape == (0,): |
|
|
59 |
return 0.0 |
|
|
60 |
dist = surface_distance.max() |
|
|
61 |
|
|
|
62 |
if dist > max_dist: |
|
|
63 |
return 1.0 |
|
|
64 |
return dist / max_dist |
|
|
65 |
|
|
|
66 |
def compute_hausdorff_score(pred, gt): |
|
|
67 |
|
|
|
68 |
y = gt.float().to("cpu").numpy() |
|
|
69 |
y_pred = pred.float().to("cpu").numpy() |
|
|
70 |
|
|
|
71 |
# hausdorff distance score |
|
|
72 |
batch_size, n_class = y_pred.shape[:2] |
|
|
73 |
spatial_size = y_pred.shape[2:] |
|
|
74 |
max_dist = np.sqrt(np.sum([l**2 for l in spatial_size])) |
|
|
75 |
hd_score = np.empty((batch_size, n_class)) |
|
|
76 |
for b, c in np.ndindex(batch_size, n_class): |
|
|
77 |
hd_score[b, c] = 1 - compute_directed_hausdorff(y_pred[b, c], y[b, c], max_dist) |
|
|
78 |
|
|
|
79 |
return torch.from_numpy(hd_score) |