[4e96d3]: / demo / video_demo.py

Download this file

112 lines (97 with data), 3.7 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
from argparse import ArgumentParser
import cv2
from mmseg.apis import inference_segmentor, init_segmentor
from mmseg.core.evaluation import get_palette
def main():
parser = ArgumentParser()
parser.add_argument('video', help='Video file or webcam id')
parser.add_argument('config', help='Config file')
parser.add_argument('checkpoint', help='Checkpoint file')
parser.add_argument(
'--device', default='cuda:0', help='Device used for inference')
parser.add_argument(
'--palette',
default='cityscapes',
help='Color palette used for segmentation map')
parser.add_argument(
'--show', action='store_true', help='Whether to show draw result')
parser.add_argument(
'--show-wait-time', default=1, type=int, help='Wait time after imshow')
parser.add_argument(
'--output-file', default=None, type=str, help='Output video file path')
parser.add_argument(
'--output-fourcc',
default='MJPG',
type=str,
help='Fourcc of the output video')
parser.add_argument(
'--output-fps', default=-1, type=int, help='FPS of the output video')
parser.add_argument(
'--output-height',
default=-1,
type=int,
help='Frame height of the output video')
parser.add_argument(
'--output-width',
default=-1,
type=int,
help='Frame width of the output video')
parser.add_argument(
'--opacity',
type=float,
default=0.5,
help='Opacity of painted segmentation map. In (0, 1] range.')
args = parser.parse_args()
assert args.show or args.output_file, \
'At least one output should be enabled.'
# build the model from a config file and a checkpoint file
model = init_segmentor(args.config, args.checkpoint, device=args.device)
# build input video
cap = cv2.VideoCapture(args.video)
assert (cap.isOpened())
input_height = cap.get(cv2.CAP_PROP_FRAME_HEIGHT)
input_width = cap.get(cv2.CAP_PROP_FRAME_WIDTH)
input_fps = cap.get(cv2.CAP_PROP_FPS)
# init output video
writer = None
output_height = None
output_width = None
if args.output_file is not None:
fourcc = cv2.VideoWriter_fourcc(*args.output_fourcc)
output_fps = args.output_fps if args.output_fps > 0 else input_fps
output_height = args.output_height if args.output_height > 0 else int(
input_height)
output_width = args.output_width if args.output_width > 0 else int(
input_width)
writer = cv2.VideoWriter(args.output_file, fourcc, output_fps,
(output_width, output_height), True)
# start looping
try:
while True:
flag, frame = cap.read()
if not flag:
break
# test a single image
result = inference_segmentor(model, frame)
# blend raw image and prediction
draw_img = model.show_result(
frame,
result,
palette=get_palette(args.palette),
show=False,
opacity=args.opacity)
if args.show:
cv2.imshow('video_demo', draw_img)
cv2.waitKey(args.show_wait_time)
if writer:
if draw_img.shape[0] != output_height or draw_img.shape[
1] != output_width:
draw_img = cv2.resize(draw_img,
(output_width, output_height))
writer.write(draw_img)
finally:
if writer:
writer.release()
cap.release()
if __name__ == '__main__':
main()