--- a +++ b/configs/gcnet/gcnet.yml @@ -0,0 +1,305 @@ +Collections: +- Name: gcnet + Metadata: + Training Data: + - Cityscapes + - ADE20K + - Pascal VOC 2012 + Aug + Paper: + URL: https://arxiv.org/abs/1904.11492 + Title: 'GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond' + README: configs/gcnet/README.md + Code: + URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/gc_head.py#L10 + Version: v0.17.0 + Converted From: + Code: https://github.com/xvjiarui/GCNet +Models: +- Name: gcnet_r50-d8_512x1024_40k_cityscapes + In Collection: gcnet + Metadata: + backbone: R-50-D8 + crop size: (512,1024) + lr schd: 40000 + inference time (ms/im): + - value: 254.45 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,1024) + Training Memory (GB): 5.8 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.69 + mIoU(ms+flip): 78.56 + Config: configs/gcnet/gcnet_r50-d8_512x1024_40k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x1024_40k_cityscapes/gcnet_r50-d8_512x1024_40k_cityscapes_20200618_074436-4b0fd17b.pth +- Name: gcnet_r101-d8_512x1024_40k_cityscapes + In Collection: gcnet + Metadata: + backbone: R-101-D8 + crop size: (512,1024) + lr schd: 40000 + inference time (ms/im): + - value: 383.14 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,1024) + Training Memory (GB): 9.2 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.28 + mIoU(ms+flip): 79.34 + Config: configs/gcnet/gcnet_r101-d8_512x1024_40k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x1024_40k_cityscapes/gcnet_r101-d8_512x1024_40k_cityscapes_20200618_074436-5e62567f.pth +- Name: gcnet_r50-d8_769x769_40k_cityscapes + In Collection: gcnet + Metadata: + backbone: R-50-D8 + crop size: (769,769) + lr schd: 40000 + inference time (ms/im): + - value: 598.8 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (769,769) + Training Memory (GB): 6.5 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.12 + mIoU(ms+flip): 80.09 + Config: configs/gcnet/gcnet_r50-d8_769x769_40k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_769x769_40k_cityscapes/gcnet_r50-d8_769x769_40k_cityscapes_20200618_182814-a26f4471.pth +- Name: gcnet_r101-d8_769x769_40k_cityscapes + In Collection: gcnet + Metadata: + backbone: R-101-D8 + crop size: (769,769) + lr schd: 40000 + inference time (ms/im): + - value: 884.96 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (769,769) + Training Memory (GB): 10.5 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.95 + mIoU(ms+flip): 80.71 + Config: configs/gcnet/gcnet_r101-d8_769x769_40k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_769x769_40k_cityscapes/gcnet_r101-d8_769x769_40k_cityscapes_20200619_092550-ca4f0a84.pth +- Name: gcnet_r50-d8_512x1024_80k_cityscapes + In Collection: gcnet + Metadata: + backbone: R-50-D8 + crop size: (512,1024) + lr schd: 80000 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.48 + mIoU(ms+flip): 80.01 + Config: configs/gcnet/gcnet_r50-d8_512x1024_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x1024_80k_cityscapes/gcnet_r50-d8_512x1024_80k_cityscapes_20200618_074450-ef8f069b.pth +- Name: gcnet_r101-d8_512x1024_80k_cityscapes + In Collection: gcnet + Metadata: + backbone: R-101-D8 + crop size: (512,1024) + lr schd: 80000 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.03 + mIoU(ms+flip): 79.84 + Config: configs/gcnet/gcnet_r101-d8_512x1024_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x1024_80k_cityscapes/gcnet_r101-d8_512x1024_80k_cityscapes_20200618_074450-778ebf69.pth +- Name: gcnet_r50-d8_769x769_80k_cityscapes + In Collection: gcnet + Metadata: + backbone: R-50-D8 + crop size: (769,769) + lr schd: 80000 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.68 + mIoU(ms+flip): 80.66 + Config: configs/gcnet/gcnet_r50-d8_769x769_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_769x769_80k_cityscapes/gcnet_r50-d8_769x769_80k_cityscapes_20200619_092516-4839565b.pth +- Name: gcnet_r101-d8_769x769_80k_cityscapes + In Collection: gcnet + Metadata: + backbone: R-101-D8 + crop size: (769,769) + lr schd: 80000 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.18 + mIoU(ms+flip): 80.71 + Config: configs/gcnet/gcnet_r101-d8_769x769_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_769x769_80k_cityscapes/gcnet_r101-d8_769x769_80k_cityscapes_20200619_092628-8e043423.pth +- Name: gcnet_r50-d8_512x512_80k_ade20k + In Collection: gcnet + Metadata: + backbone: R-50-D8 + crop size: (512,512) + lr schd: 80000 + inference time (ms/im): + - value: 42.77 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,512) + Training Memory (GB): 8.5 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 41.47 + mIoU(ms+flip): 42.85 + Config: configs/gcnet/gcnet_r50-d8_512x512_80k_ade20k.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_80k_ade20k/gcnet_r50-d8_512x512_80k_ade20k_20200614_185146-91a6da41.pth +- Name: gcnet_r101-d8_512x512_80k_ade20k + In Collection: gcnet + Metadata: + backbone: R-101-D8 + crop size: (512,512) + lr schd: 80000 + inference time (ms/im): + - value: 65.79 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,512) + Training Memory (GB): 12.0 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 42.82 + mIoU(ms+flip): 44.54 + Config: configs/gcnet/gcnet_r101-d8_512x512_80k_ade20k.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_80k_ade20k/gcnet_r101-d8_512x512_80k_ade20k_20200615_020811-c3fcb6dd.pth +- Name: gcnet_r50-d8_512x512_160k_ade20k + In Collection: gcnet + Metadata: + backbone: R-50-D8 + crop size: (512,512) + lr schd: 160000 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 42.37 + mIoU(ms+flip): 43.52 + Config: configs/gcnet/gcnet_r50-d8_512x512_160k_ade20k.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_160k_ade20k/gcnet_r50-d8_512x512_160k_ade20k_20200615_224122-d95f3e1f.pth +- Name: gcnet_r101-d8_512x512_160k_ade20k + In Collection: gcnet + Metadata: + backbone: R-101-D8 + crop size: (512,512) + lr schd: 160000 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 43.69 + mIoU(ms+flip): 45.21 + Config: configs/gcnet/gcnet_r101-d8_512x512_160k_ade20k.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_160k_ade20k/gcnet_r101-d8_512x512_160k_ade20k_20200615_225406-615528d7.pth +- Name: gcnet_r50-d8_512x512_20k_voc12aug + In Collection: gcnet + Metadata: + backbone: R-50-D8 + crop size: (512,512) + lr schd: 20000 + inference time (ms/im): + - value: 42.83 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,512) + Training Memory (GB): 5.8 + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 76.42 + mIoU(ms+flip): 77.51 + Config: configs/gcnet/gcnet_r50-d8_512x512_20k_voc12aug.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_20k_voc12aug/gcnet_r50-d8_512x512_20k_voc12aug_20200617_165701-3cbfdab1.pth +- Name: gcnet_r101-d8_512x512_20k_voc12aug + In Collection: gcnet + Metadata: + backbone: R-101-D8 + crop size: (512,512) + lr schd: 20000 + inference time (ms/im): + - value: 67.57 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,512) + Training Memory (GB): 9.2 + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 77.41 + mIoU(ms+flip): 78.56 + Config: configs/gcnet/gcnet_r101-d8_512x512_20k_voc12aug.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_20k_voc12aug/gcnet_r101-d8_512x512_20k_voc12aug_20200617_165713-6c720aa9.pth +- Name: gcnet_r50-d8_512x512_40k_voc12aug + In Collection: gcnet + Metadata: + backbone: R-50-D8 + crop size: (512,512) + lr schd: 40000 + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 76.24 + mIoU(ms+flip): 77.63 + Config: configs/gcnet/gcnet_r50-d8_512x512_40k_voc12aug.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_40k_voc12aug/gcnet_r50-d8_512x512_40k_voc12aug_20200613_195105-9797336d.pth +- Name: gcnet_r101-d8_512x512_40k_voc12aug + In Collection: gcnet + Metadata: + backbone: R-101-D8 + crop size: (512,512) + lr schd: 40000 + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 77.84 + mIoU(ms+flip): 78.59 + Config: configs/gcnet/gcnet_r101-d8_512x512_40k_voc12aug.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_40k_voc12aug/gcnet_r101-d8_512x512_40k_voc12aug_20200613_185806-1e38208d.pth