a b/configs/gcnet/gcnet.yml
1
Collections:
2
- Name: gcnet
3
  Metadata:
4
    Training Data:
5
    - Cityscapes
6
    - ADE20K
7
    - Pascal VOC 2012 + Aug
8
  Paper:
9
    URL: https://arxiv.org/abs/1904.11492
10
    Title: 'GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond'
11
  README: configs/gcnet/README.md
12
  Code:
13
    URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/gc_head.py#L10
14
    Version: v0.17.0
15
  Converted From:
16
    Code: https://github.com/xvjiarui/GCNet
17
Models:
18
- Name: gcnet_r50-d8_512x1024_40k_cityscapes
19
  In Collection: gcnet
20
  Metadata:
21
    backbone: R-50-D8
22
    crop size: (512,1024)
23
    lr schd: 40000
24
    inference time (ms/im):
25
    - value: 254.45
26
      hardware: V100
27
      backend: PyTorch
28
      batch size: 1
29
      mode: FP32
30
      resolution: (512,1024)
31
    Training Memory (GB): 5.8
32
  Results:
33
  - Task: Semantic Segmentation
34
    Dataset: Cityscapes
35
    Metrics:
36
      mIoU: 77.69
37
      mIoU(ms+flip): 78.56
38
  Config: configs/gcnet/gcnet_r50-d8_512x1024_40k_cityscapes.py
39
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x1024_40k_cityscapes/gcnet_r50-d8_512x1024_40k_cityscapes_20200618_074436-4b0fd17b.pth
40
- Name: gcnet_r101-d8_512x1024_40k_cityscapes
41
  In Collection: gcnet
42
  Metadata:
43
    backbone: R-101-D8
44
    crop size: (512,1024)
45
    lr schd: 40000
46
    inference time (ms/im):
47
    - value: 383.14
48
      hardware: V100
49
      backend: PyTorch
50
      batch size: 1
51
      mode: FP32
52
      resolution: (512,1024)
53
    Training Memory (GB): 9.2
54
  Results:
55
  - Task: Semantic Segmentation
56
    Dataset: Cityscapes
57
    Metrics:
58
      mIoU: 78.28
59
      mIoU(ms+flip): 79.34
60
  Config: configs/gcnet/gcnet_r101-d8_512x1024_40k_cityscapes.py
61
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x1024_40k_cityscapes/gcnet_r101-d8_512x1024_40k_cityscapes_20200618_074436-5e62567f.pth
62
- Name: gcnet_r50-d8_769x769_40k_cityscapes
63
  In Collection: gcnet
64
  Metadata:
65
    backbone: R-50-D8
66
    crop size: (769,769)
67
    lr schd: 40000
68
    inference time (ms/im):
69
    - value: 598.8
70
      hardware: V100
71
      backend: PyTorch
72
      batch size: 1
73
      mode: FP32
74
      resolution: (769,769)
75
    Training Memory (GB): 6.5
76
  Results:
77
  - Task: Semantic Segmentation
78
    Dataset: Cityscapes
79
    Metrics:
80
      mIoU: 78.12
81
      mIoU(ms+flip): 80.09
82
  Config: configs/gcnet/gcnet_r50-d8_769x769_40k_cityscapes.py
83
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_769x769_40k_cityscapes/gcnet_r50-d8_769x769_40k_cityscapes_20200618_182814-a26f4471.pth
84
- Name: gcnet_r101-d8_769x769_40k_cityscapes
85
  In Collection: gcnet
86
  Metadata:
87
    backbone: R-101-D8
88
    crop size: (769,769)
89
    lr schd: 40000
90
    inference time (ms/im):
91
    - value: 884.96
92
      hardware: V100
93
      backend: PyTorch
94
      batch size: 1
95
      mode: FP32
96
      resolution: (769,769)
97
    Training Memory (GB): 10.5
98
  Results:
99
  - Task: Semantic Segmentation
100
    Dataset: Cityscapes
101
    Metrics:
102
      mIoU: 78.95
103
      mIoU(ms+flip): 80.71
104
  Config: configs/gcnet/gcnet_r101-d8_769x769_40k_cityscapes.py
105
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_769x769_40k_cityscapes/gcnet_r101-d8_769x769_40k_cityscapes_20200619_092550-ca4f0a84.pth
106
- Name: gcnet_r50-d8_512x1024_80k_cityscapes
107
  In Collection: gcnet
108
  Metadata:
109
    backbone: R-50-D8
110
    crop size: (512,1024)
111
    lr schd: 80000
112
  Results:
113
  - Task: Semantic Segmentation
114
    Dataset: Cityscapes
115
    Metrics:
116
      mIoU: 78.48
117
      mIoU(ms+flip): 80.01
118
  Config: configs/gcnet/gcnet_r50-d8_512x1024_80k_cityscapes.py
119
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x1024_80k_cityscapes/gcnet_r50-d8_512x1024_80k_cityscapes_20200618_074450-ef8f069b.pth
120
- Name: gcnet_r101-d8_512x1024_80k_cityscapes
121
  In Collection: gcnet
122
  Metadata:
123
    backbone: R-101-D8
124
    crop size: (512,1024)
125
    lr schd: 80000
126
  Results:
127
  - Task: Semantic Segmentation
128
    Dataset: Cityscapes
129
    Metrics:
130
      mIoU: 79.03
131
      mIoU(ms+flip): 79.84
132
  Config: configs/gcnet/gcnet_r101-d8_512x1024_80k_cityscapes.py
133
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x1024_80k_cityscapes/gcnet_r101-d8_512x1024_80k_cityscapes_20200618_074450-778ebf69.pth
134
- Name: gcnet_r50-d8_769x769_80k_cityscapes
135
  In Collection: gcnet
136
  Metadata:
137
    backbone: R-50-D8
138
    crop size: (769,769)
139
    lr schd: 80000
140
  Results:
141
  - Task: Semantic Segmentation
142
    Dataset: Cityscapes
143
    Metrics:
144
      mIoU: 78.68
145
      mIoU(ms+flip): 80.66
146
  Config: configs/gcnet/gcnet_r50-d8_769x769_80k_cityscapes.py
147
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_769x769_80k_cityscapes/gcnet_r50-d8_769x769_80k_cityscapes_20200619_092516-4839565b.pth
148
- Name: gcnet_r101-d8_769x769_80k_cityscapes
149
  In Collection: gcnet
150
  Metadata:
151
    backbone: R-101-D8
152
    crop size: (769,769)
153
    lr schd: 80000
154
  Results:
155
  - Task: Semantic Segmentation
156
    Dataset: Cityscapes
157
    Metrics:
158
      mIoU: 79.18
159
      mIoU(ms+flip): 80.71
160
  Config: configs/gcnet/gcnet_r101-d8_769x769_80k_cityscapes.py
161
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_769x769_80k_cityscapes/gcnet_r101-d8_769x769_80k_cityscapes_20200619_092628-8e043423.pth
162
- Name: gcnet_r50-d8_512x512_80k_ade20k
163
  In Collection: gcnet
164
  Metadata:
165
    backbone: R-50-D8
166
    crop size: (512,512)
167
    lr schd: 80000
168
    inference time (ms/im):
169
    - value: 42.77
170
      hardware: V100
171
      backend: PyTorch
172
      batch size: 1
173
      mode: FP32
174
      resolution: (512,512)
175
    Training Memory (GB): 8.5
176
  Results:
177
  - Task: Semantic Segmentation
178
    Dataset: ADE20K
179
    Metrics:
180
      mIoU: 41.47
181
      mIoU(ms+flip): 42.85
182
  Config: configs/gcnet/gcnet_r50-d8_512x512_80k_ade20k.py
183
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_80k_ade20k/gcnet_r50-d8_512x512_80k_ade20k_20200614_185146-91a6da41.pth
184
- Name: gcnet_r101-d8_512x512_80k_ade20k
185
  In Collection: gcnet
186
  Metadata:
187
    backbone: R-101-D8
188
    crop size: (512,512)
189
    lr schd: 80000
190
    inference time (ms/im):
191
    - value: 65.79
192
      hardware: V100
193
      backend: PyTorch
194
      batch size: 1
195
      mode: FP32
196
      resolution: (512,512)
197
    Training Memory (GB): 12.0
198
  Results:
199
  - Task: Semantic Segmentation
200
    Dataset: ADE20K
201
    Metrics:
202
      mIoU: 42.82
203
      mIoU(ms+flip): 44.54
204
  Config: configs/gcnet/gcnet_r101-d8_512x512_80k_ade20k.py
205
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_80k_ade20k/gcnet_r101-d8_512x512_80k_ade20k_20200615_020811-c3fcb6dd.pth
206
- Name: gcnet_r50-d8_512x512_160k_ade20k
207
  In Collection: gcnet
208
  Metadata:
209
    backbone: R-50-D8
210
    crop size: (512,512)
211
    lr schd: 160000
212
  Results:
213
  - Task: Semantic Segmentation
214
    Dataset: ADE20K
215
    Metrics:
216
      mIoU: 42.37
217
      mIoU(ms+flip): 43.52
218
  Config: configs/gcnet/gcnet_r50-d8_512x512_160k_ade20k.py
219
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_160k_ade20k/gcnet_r50-d8_512x512_160k_ade20k_20200615_224122-d95f3e1f.pth
220
- Name: gcnet_r101-d8_512x512_160k_ade20k
221
  In Collection: gcnet
222
  Metadata:
223
    backbone: R-101-D8
224
    crop size: (512,512)
225
    lr schd: 160000
226
  Results:
227
  - Task: Semantic Segmentation
228
    Dataset: ADE20K
229
    Metrics:
230
      mIoU: 43.69
231
      mIoU(ms+flip): 45.21
232
  Config: configs/gcnet/gcnet_r101-d8_512x512_160k_ade20k.py
233
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_160k_ade20k/gcnet_r101-d8_512x512_160k_ade20k_20200615_225406-615528d7.pth
234
- Name: gcnet_r50-d8_512x512_20k_voc12aug
235
  In Collection: gcnet
236
  Metadata:
237
    backbone: R-50-D8
238
    crop size: (512,512)
239
    lr schd: 20000
240
    inference time (ms/im):
241
    - value: 42.83
242
      hardware: V100
243
      backend: PyTorch
244
      batch size: 1
245
      mode: FP32
246
      resolution: (512,512)
247
    Training Memory (GB): 5.8
248
  Results:
249
  - Task: Semantic Segmentation
250
    Dataset: Pascal VOC 2012 + Aug
251
    Metrics:
252
      mIoU: 76.42
253
      mIoU(ms+flip): 77.51
254
  Config: configs/gcnet/gcnet_r50-d8_512x512_20k_voc12aug.py
255
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_20k_voc12aug/gcnet_r50-d8_512x512_20k_voc12aug_20200617_165701-3cbfdab1.pth
256
- Name: gcnet_r101-d8_512x512_20k_voc12aug
257
  In Collection: gcnet
258
  Metadata:
259
    backbone: R-101-D8
260
    crop size: (512,512)
261
    lr schd: 20000
262
    inference time (ms/im):
263
    - value: 67.57
264
      hardware: V100
265
      backend: PyTorch
266
      batch size: 1
267
      mode: FP32
268
      resolution: (512,512)
269
    Training Memory (GB): 9.2
270
  Results:
271
  - Task: Semantic Segmentation
272
    Dataset: Pascal VOC 2012 + Aug
273
    Metrics:
274
      mIoU: 77.41
275
      mIoU(ms+flip): 78.56
276
  Config: configs/gcnet/gcnet_r101-d8_512x512_20k_voc12aug.py
277
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_20k_voc12aug/gcnet_r101-d8_512x512_20k_voc12aug_20200617_165713-6c720aa9.pth
278
- Name: gcnet_r50-d8_512x512_40k_voc12aug
279
  In Collection: gcnet
280
  Metadata:
281
    backbone: R-50-D8
282
    crop size: (512,512)
283
    lr schd: 40000
284
  Results:
285
  - Task: Semantic Segmentation
286
    Dataset: Pascal VOC 2012 + Aug
287
    Metrics:
288
      mIoU: 76.24
289
      mIoU(ms+flip): 77.63
290
  Config: configs/gcnet/gcnet_r50-d8_512x512_40k_voc12aug.py
291
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_40k_voc12aug/gcnet_r50-d8_512x512_40k_voc12aug_20200613_195105-9797336d.pth
292
- Name: gcnet_r101-d8_512x512_40k_voc12aug
293
  In Collection: gcnet
294
  Metadata:
295
    backbone: R-101-D8
296
    crop size: (512,512)
297
    lr schd: 40000
298
  Results:
299
  - Task: Semantic Segmentation
300
    Dataset: Pascal VOC 2012 + Aug
301
    Metrics:
302
      mIoU: 77.84
303
      mIoU(ms+flip): 78.59
304
  Config: configs/gcnet/gcnet_r101-d8_512x512_40k_voc12aug.py
305
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_40k_voc12aug/gcnet_r101-d8_512x512_40k_voc12aug_20200613_185806-1e38208d.pth