--- a +++ b/configs/fcn/fcn.yml @@ -0,0 +1,827 @@ +Collections: +- Name: fcn + Metadata: + Training Data: + - Cityscapes + - ADE20K + - Pascal VOC 2012 + Aug + - Pascal Context + - Pascal Context 59 + Paper: + URL: https://arxiv.org/abs/1411.4038 + Title: Fully Convolutional Networks for Semantic Segmentation + README: configs/fcn/README.md + Code: + URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/fcn_head.py#L11 + Version: v0.17.0 + Converted From: + Code: https://github.com/BVLC/caffe/wiki/Model-Zoo#fcn +Models: +- Name: fcn_r50-d8_512x1024_40k_cityscapes + In Collection: fcn + Metadata: + backbone: R-50-D8 + crop size: (512,1024) + lr schd: 40000 + inference time (ms/im): + - value: 239.81 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,1024) + Training Memory (GB): 5.7 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 72.25 + mIoU(ms+flip): 73.36 + Config: configs/fcn/fcn_r50-d8_512x1024_40k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x1024_40k_cityscapes/fcn_r50-d8_512x1024_40k_cityscapes_20200604_192608-efe53f0d.pth +- Name: fcn_r101-d8_512x1024_40k_cityscapes + In Collection: fcn + Metadata: + backbone: R-101-D8 + crop size: (512,1024) + lr schd: 40000 + inference time (ms/im): + - value: 375.94 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,1024) + Training Memory (GB): 9.2 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 75.45 + mIoU(ms+flip): 76.58 + Config: configs/fcn/fcn_r101-d8_512x1024_40k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x1024_40k_cityscapes/fcn_r101-d8_512x1024_40k_cityscapes_20200604_181852-a883d3a1.pth +- Name: fcn_r50-d8_769x769_40k_cityscapes + In Collection: fcn + Metadata: + backbone: R-50-D8 + crop size: (769,769) + lr schd: 40000 + inference time (ms/im): + - value: 555.56 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (769,769) + Training Memory (GB): 6.5 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 71.47 + mIoU(ms+flip): 72.54 + Config: configs/fcn/fcn_r50-d8_769x769_40k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_769x769_40k_cityscapes/fcn_r50-d8_769x769_40k_cityscapes_20200606_113104-977b5d02.pth +- Name: fcn_r101-d8_769x769_40k_cityscapes + In Collection: fcn + Metadata: + backbone: R-101-D8 + crop size: (769,769) + lr schd: 40000 + inference time (ms/im): + - value: 840.34 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (769,769) + Training Memory (GB): 10.4 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 73.93 + mIoU(ms+flip): 75.14 + Config: configs/fcn/fcn_r101-d8_769x769_40k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_769x769_40k_cityscapes/fcn_r101-d8_769x769_40k_cityscapes_20200606_113208-7d4ab69c.pth +- Name: fcn_r18-d8_512x1024_80k_cityscapes + In Collection: fcn + Metadata: + backbone: R-18-D8 + crop size: (512,1024) + lr schd: 80000 + inference time (ms/im): + - value: 68.26 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,1024) + Training Memory (GB): 1.7 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 71.11 + mIoU(ms+flip): 72.91 + Config: configs/fcn/fcn_r18-d8_512x1024_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18-d8_512x1024_80k_cityscapes/fcn_r18-d8_512x1024_80k_cityscapes_20201225_021327-6c50f8b4.pth +- Name: fcn_r50-d8_512x1024_80k_cityscapes + In Collection: fcn + Metadata: + backbone: R-50-D8 + crop size: (512,1024) + lr schd: 80000 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 73.61 + mIoU(ms+flip): 74.24 + Config: configs/fcn/fcn_r50-d8_512x1024_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x1024_80k_cityscapes/fcn_r50-d8_512x1024_80k_cityscapes_20200606_113019-03aa804d.pth +- Name: fcn_r101-d8_512x1024_80k_cityscapes + In Collection: fcn + Metadata: + backbone: R-101-D8 + crop size: (512,1024) + lr schd: 80000 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 75.13 + mIoU(ms+flip): 75.94 + Config: configs/fcn/fcn_r101-d8_512x1024_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x1024_80k_cityscapes/fcn_r101-d8_512x1024_80k_cityscapes_20200606_113038-3fb937eb.pth +- Name: fcn_r101-d8_fp16_512x1024_80k_cityscapes + In Collection: fcn + Metadata: + backbone: R-101-D8 + crop size: (512,1024) + lr schd: 80000 + inference time (ms/im): + - value: 115.74 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP16 + resolution: (512,1024) + Training Memory (GB): 5.37 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 76.8 + Config: configs/fcn/fcn_r101-d8_fp16_512x1024_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_fp16_512x1024_80k_cityscapes/fcn_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230921-fb13e883.pth +- Name: fcn_r18-d8_769x769_80k_cityscapes + In Collection: fcn + Metadata: + backbone: R-18-D8 + crop size: (769,769) + lr schd: 80000 + inference time (ms/im): + - value: 156.25 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (769,769) + Training Memory (GB): 1.9 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 70.8 + mIoU(ms+flip): 73.16 + Config: configs/fcn/fcn_r18-d8_769x769_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18-d8_769x769_80k_cityscapes/fcn_r18-d8_769x769_80k_cityscapes_20201225_021451-9739d1b8.pth +- Name: fcn_r50-d8_769x769_80k_cityscapes + In Collection: fcn + Metadata: + backbone: R-50-D8 + crop size: (769,769) + lr schd: 80000 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 72.64 + mIoU(ms+flip): 73.32 + Config: configs/fcn/fcn_r50-d8_769x769_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_769x769_80k_cityscapes/fcn_r50-d8_769x769_80k_cityscapes_20200606_195749-f5caeabc.pth +- Name: fcn_r101-d8_769x769_80k_cityscapes + In Collection: fcn + Metadata: + backbone: R-101-D8 + crop size: (769,769) + lr schd: 80000 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 75.52 + mIoU(ms+flip): 76.61 + Config: configs/fcn/fcn_r101-d8_769x769_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_769x769_80k_cityscapes/fcn_r101-d8_769x769_80k_cityscapes_20200606_214354-45cbac68.pth +- Name: fcn_r18b-d8_512x1024_80k_cityscapes + In Collection: fcn + Metadata: + backbone: R-18b-D8 + crop size: (512,1024) + lr schd: 80000 + inference time (ms/im): + - value: 59.74 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,1024) + Training Memory (GB): 1.6 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 70.24 + mIoU(ms+flip): 72.77 + Config: configs/fcn/fcn_r18b-d8_512x1024_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18b-d8_512x1024_80k_cityscapes/fcn_r18b-d8_512x1024_80k_cityscapes_20201225_230143-92c0f445.pth +- Name: fcn_r50b-d8_512x1024_80k_cityscapes + In Collection: fcn + Metadata: + backbone: R-50b-D8 + crop size: (512,1024) + lr schd: 80000 + inference time (ms/im): + - value: 238.1 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,1024) + Training Memory (GB): 5.6 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 75.65 + mIoU(ms+flip): 77.59 + Config: configs/fcn/fcn_r50b-d8_512x1024_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50b-d8_512x1024_80k_cityscapes/fcn_r50b-d8_512x1024_80k_cityscapes_20201225_094221-82957416.pth +- Name: fcn_r101b-d8_512x1024_80k_cityscapes + In Collection: fcn + Metadata: + backbone: R-101b-D8 + crop size: (512,1024) + lr schd: 80000 + inference time (ms/im): + - value: 366.3 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,1024) + Training Memory (GB): 9.1 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.37 + mIoU(ms+flip): 78.77 + Config: configs/fcn/fcn_r101b-d8_512x1024_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101b-d8_512x1024_80k_cityscapes/fcn_r101b-d8_512x1024_80k_cityscapes_20201226_160213-4543858f.pth +- Name: fcn_r18b-d8_769x769_80k_cityscapes + In Collection: fcn + Metadata: + backbone: R-18b-D8 + crop size: (769,769) + lr schd: 80000 + inference time (ms/im): + - value: 149.25 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (769,769) + Training Memory (GB): 1.7 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 69.66 + mIoU(ms+flip): 72.07 + Config: configs/fcn/fcn_r18b-d8_769x769_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18b-d8_769x769_80k_cityscapes/fcn_r18b-d8_769x769_80k_cityscapes_20201226_004430-32d504e5.pth +- Name: fcn_r50b-d8_769x769_80k_cityscapes + In Collection: fcn + Metadata: + backbone: R-50b-D8 + crop size: (769,769) + lr schd: 80000 + inference time (ms/im): + - value: 549.45 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (769,769) + Training Memory (GB): 6.3 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 73.83 + mIoU(ms+flip): 76.6 + Config: configs/fcn/fcn_r50b-d8_769x769_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50b-d8_769x769_80k_cityscapes/fcn_r50b-d8_769x769_80k_cityscapes_20201225_094223-94552d38.pth +- Name: fcn_r101b-d8_769x769_80k_cityscapes + In Collection: fcn + Metadata: + backbone: R-101b-D8 + crop size: (769,769) + lr schd: 80000 + inference time (ms/im): + - value: 869.57 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (769,769) + Training Memory (GB): 10.3 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.02 + mIoU(ms+flip): 78.67 + Config: configs/fcn/fcn_r101b-d8_769x769_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101b-d8_769x769_80k_cityscapes/fcn_r101b-d8_769x769_80k_cityscapes_20201226_170012-82be37e2.pth +- Name: fcn_d6_r50-d16_512x1024_40k_cityscapes + In Collection: fcn + Metadata: + backbone: R-50-D16 + crop size: (512,1024) + lr schd: 40000 + inference time (ms/im): + - value: 97.85 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,1024) + Training Memory (GB): 3.4 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.06 + mIoU(ms+flip): 78.85 + Config: configs/fcn/fcn_d6_r50-d16_512x1024_40k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_512x1024_40k_cityscapes/fcn_d6_r50-d16_512x1024_40k_cityscapes_20210305_130133-98d5d1bc.pth +- Name: fcn_d6_r50-d16_512x1024_80k_cityscapes + In Collection: fcn + Metadata: + backbone: R-50-D16 + crop size: (512,1024) + lr schd: 80000 + inference time (ms/im): + - value: 96.62 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,1024) + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.27 + mIoU(ms+flip): 78.88 + Config: configs/fcn/fcn_d6_r50-d16_512x1024_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_512x1024_80k_cityscapes/fcn_d6_r50-d16_512x1024_80k_cityscapes_20210306_115604-133c292f.pth +- Name: fcn_d6_r50-d16_769x769_40k_cityscapes + In Collection: fcn + Metadata: + backbone: R-50-D16 + crop size: (769,769) + lr schd: 40000 + inference time (ms/im): + - value: 239.81 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (769,769) + Training Memory (GB): 3.7 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 76.82 + mIoU(ms+flip): 78.22 + Config: configs/fcn/fcn_d6_r50-d16_769x769_40k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_769x769_40k_cityscapes/fcn_d6_r50-d16_769x769_40k_cityscapes_20210305_185744-1aab18ed.pth +- Name: fcn_d6_r50-d16_769x769_80k_cityscapes + In Collection: fcn + Metadata: + backbone: R-50-D16 + crop size: (769,769) + lr schd: 80000 + inference time (ms/im): + - value: 240.96 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (769,769) + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.04 + mIoU(ms+flip): 78.4 + Config: configs/fcn/fcn_d6_r50-d16_769x769_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_769x769_80k_cityscapes/fcn_d6_r50-d16_769x769_80k_cityscapes_20210305_200413-109d88eb.pth +- Name: fcn_d6_r101-d16_512x1024_40k_cityscapes + In Collection: fcn + Metadata: + backbone: R-101-D16 + crop size: (512,1024) + lr schd: 40000 + inference time (ms/im): + - value: 124.38 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,1024) + Training Memory (GB): 4.5 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.36 + mIoU(ms+flip): 79.18 + Config: configs/fcn/fcn_d6_r101-d16_512x1024_40k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_512x1024_40k_cityscapes/fcn_d6_r101-d16_512x1024_40k_cityscapes_20210305_130337-9cf2b450.pth +- Name: fcn_d6_r101-d16_512x1024_80k_cityscapes + In Collection: fcn + Metadata: + backbone: R-101-D16 + crop size: (512,1024) + lr schd: 80000 + inference time (ms/im): + - value: 121.07 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,1024) + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.46 + mIoU(ms+flip): 80.42 + Config: configs/fcn/fcn_d6_r101-d16_512x1024_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_512x1024_80k_cityscapes/fcn_d6_r101-d16_512x1024_80k_cityscapes_20210308_102747-cb336445.pth +- Name: fcn_d6_r101-d16_769x769_40k_cityscapes + In Collection: fcn + Metadata: + backbone: R-101-D16 + crop size: (769,769) + lr schd: 40000 + inference time (ms/im): + - value: 320.51 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (769,769) + Training Memory (GB): 5.0 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.28 + mIoU(ms+flip): 78.95 + Config: configs/fcn/fcn_d6_r101-d16_769x769_40k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_769x769_40k_cityscapes/fcn_d6_r101-d16_769x769_40k_cityscapes_20210308_102453-60b114e9.pth +- Name: fcn_d6_r101-d16_769x769_80k_cityscapes + In Collection: fcn + Metadata: + backbone: R-101-D16 + crop size: (769,769) + lr schd: 80000 + inference time (ms/im): + - value: 311.53 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (769,769) + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.06 + mIoU(ms+flip): 79.58 + Config: configs/fcn/fcn_d6_r101-d16_769x769_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_769x769_80k_cityscapes/fcn_d6_r101-d16_769x769_80k_cityscapes_20210306_120016-e33adc4f.pth +- Name: fcn_d6_r50b-d16_512x1024_80k_cityscapes + In Collection: fcn + Metadata: + backbone: R-50b-D16 + crop size: (512,1024) + lr schd: 80000 + inference time (ms/im): + - value: 98.43 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,1024) + Training Memory (GB): 3.2 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 76.99 + mIoU(ms+flip): 79.03 + Config: configs/fcn/fcn_d6_r50b-d16_512x1024_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50b-d16_512x1024_80k_cityscapes/fcn_d6_r50b-d16_512x1024_80k_cityscapes_20210311_125550-6a0b62e9.pth +- Name: fcn_d6_r50b-d16_769x769_80k_cityscapes + In Collection: fcn + Metadata: + backbone: R-50b-D16 + crop size: (769,769) + lr schd: 80000 + inference time (ms/im): + - value: 239.81 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (769,769) + Training Memory (GB): 3.6 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 76.86 + mIoU(ms+flip): 78.52 + Config: configs/fcn/fcn_d6_r50b-d16_769x769_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50b-d16_769x769_80k_cityscapes/fcn_d6_r50b-d16_769x769_80k_cityscapes_20210311_131012-d665f231.pth +- Name: fcn_d6_r101b-d16_512x1024_80k_cityscapes + In Collection: fcn + Metadata: + backbone: R-101b-D16 + crop size: (512,1024) + lr schd: 80000 + inference time (ms/im): + - value: 118.2 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,1024) + Training Memory (GB): 4.3 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.72 + mIoU(ms+flip): 79.53 + Config: configs/fcn/fcn_d6_r101b-d16_512x1024_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101b-d16_512x1024_80k_cityscapes/fcn_d6_r101b-d16_512x1024_80k_cityscapes_20210311_144305-3f2eb5b4.pth +- Name: fcn_d6_r101b-d16_769x769_80k_cityscapes + In Collection: fcn + Metadata: + backbone: R-101b-D16 + crop size: (769,769) + lr schd: 80000 + inference time (ms/im): + - value: 301.2 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (769,769) + Training Memory (GB): 4.8 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.34 + mIoU(ms+flip): 78.91 + Config: configs/fcn/fcn_d6_r101b-d16_769x769_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101b-d16_769x769_80k_cityscapes/fcn_d6_r101b-d16_769x769_80k_cityscapes_20210311_154527-c4d8bfbc.pth +- Name: fcn_r50-d8_512x512_80k_ade20k + In Collection: fcn + Metadata: + backbone: R-50-D8 + crop size: (512,512) + lr schd: 80000 + inference time (ms/im): + - value: 42.57 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,512) + Training Memory (GB): 8.5 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 35.94 + mIoU(ms+flip): 37.94 + Config: configs/fcn/fcn_r50-d8_512x512_80k_ade20k.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_80k_ade20k/fcn_r50-d8_512x512_80k_ade20k_20200614_144016-f8ac5082.pth +- Name: fcn_r101-d8_512x512_80k_ade20k + In Collection: fcn + Metadata: + backbone: R-101-D8 + crop size: (512,512) + lr schd: 80000 + inference time (ms/im): + - value: 67.66 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,512) + Training Memory (GB): 12.0 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 39.61 + mIoU(ms+flip): 40.83 + Config: configs/fcn/fcn_r101-d8_512x512_80k_ade20k.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_80k_ade20k/fcn_r101-d8_512x512_80k_ade20k_20200615_014143-bc1809f7.pth +- Name: fcn_r50-d8_512x512_160k_ade20k + In Collection: fcn + Metadata: + backbone: R-50-D8 + crop size: (512,512) + lr schd: 160000 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 36.1 + mIoU(ms+flip): 38.08 + Config: configs/fcn/fcn_r50-d8_512x512_160k_ade20k.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_160k_ade20k/fcn_r50-d8_512x512_160k_ade20k_20200615_100713-4edbc3b4.pth +- Name: fcn_r101-d8_512x512_160k_ade20k + In Collection: fcn + Metadata: + backbone: R-101-D8 + crop size: (512,512) + lr schd: 160000 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 39.91 + mIoU(ms+flip): 41.4 + Config: configs/fcn/fcn_r101-d8_512x512_160k_ade20k.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_160k_ade20k/fcn_r101-d8_512x512_160k_ade20k_20200615_105816-fd192bd5.pth +- Name: fcn_r50-d8_512x512_20k_voc12aug + In Collection: fcn + Metadata: + backbone: R-50-D8 + crop size: (512,512) + lr schd: 20000 + inference time (ms/im): + - value: 42.96 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,512) + Training Memory (GB): 5.7 + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 67.08 + mIoU(ms+flip): 69.94 + Config: configs/fcn/fcn_r50-d8_512x512_20k_voc12aug.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_20k_voc12aug/fcn_r50-d8_512x512_20k_voc12aug_20200617_010715-52dc5306.pth +- Name: fcn_r101-d8_512x512_20k_voc12aug + In Collection: fcn + Metadata: + backbone: R-101-D8 + crop size: (512,512) + lr schd: 20000 + inference time (ms/im): + - value: 67.52 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,512) + Training Memory (GB): 9.2 + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 71.16 + mIoU(ms+flip): 73.57 + Config: configs/fcn/fcn_r101-d8_512x512_20k_voc12aug.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_20k_voc12aug/fcn_r101-d8_512x512_20k_voc12aug_20200617_010842-0bb4e798.pth +- Name: fcn_r50-d8_512x512_40k_voc12aug + In Collection: fcn + Metadata: + backbone: R-50-D8 + crop size: (512,512) + lr schd: 40000 + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 66.97 + mIoU(ms+flip): 69.04 + Config: configs/fcn/fcn_r50-d8_512x512_40k_voc12aug.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_40k_voc12aug/fcn_r50-d8_512x512_40k_voc12aug_20200613_161222-5e2dbf40.pth +- Name: fcn_r101-d8_512x512_40k_voc12aug + In Collection: fcn + Metadata: + backbone: R-101-D8 + crop size: (512,512) + lr schd: 40000 + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 69.91 + mIoU(ms+flip): 72.38 + Config: configs/fcn/fcn_r101-d8_512x512_40k_voc12aug.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_40k_voc12aug/fcn_r101-d8_512x512_40k_voc12aug_20200613_161240-4c8bcefd.pth +- Name: fcn_r101-d8_480x480_40k_pascal_context + In Collection: fcn + Metadata: + backbone: R-101-D8 + crop size: (480,480) + lr schd: 40000 + inference time (ms/im): + - value: 100.7 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (480,480) + Results: + - Task: Semantic Segmentation + Dataset: Pascal Context + Metrics: + mIoU: 44.43 + mIoU(ms+flip): 45.63 + Config: configs/fcn/fcn_r101-d8_480x480_40k_pascal_context.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_40k_pascal_context/fcn_r101-d8_480x480_40k_pascal_context_20210421_154757-b5e97937.pth +- Name: fcn_r101-d8_480x480_80k_pascal_context + In Collection: fcn + Metadata: + backbone: R-101-D8 + crop size: (480,480) + lr schd: 80000 + Results: + - Task: Semantic Segmentation + Dataset: Pascal Context + Metrics: + mIoU: 44.13 + mIoU(ms+flip): 45.26 + Config: configs/fcn/fcn_r101-d8_480x480_80k_pascal_context.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_80k_pascal_context/fcn_r101-d8_480x480_80k_pascal_context_20210421_163310-4711813f.pth +- Name: fcn_r101-d8_480x480_40k_pascal_context_59 + In Collection: fcn + Metadata: + backbone: R-101-D8 + crop size: (480,480) + lr schd: 40000 + Results: + - Task: Semantic Segmentation + Dataset: Pascal Context 59 + Metrics: + mIoU: 48.42 + mIoU(ms+flip): 50.4 + Config: configs/fcn/fcn_r101-d8_480x480_40k_pascal_context_59.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_40k_pascal_context_59/fcn_r101-d8_480x480_40k_pascal_context_59_20210415_230724-8cf83682.pth +- Name: fcn_r101-d8_480x480_80k_pascal_context_59 + In Collection: fcn + Metadata: + backbone: R-101-D8 + crop size: (480,480) + lr schd: 80000 + Results: + - Task: Semantic Segmentation + Dataset: Pascal Context 59 + Metrics: + mIoU: 49.35 + mIoU(ms+flip): 51.38 + Config: configs/fcn/fcn_r101-d8_480x480_80k_pascal_context_59.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_80k_pascal_context_59/fcn_r101-d8_480x480_80k_pascal_context_59_20210416_110804-9a6f2c94.pth