|
a |
|
b/configs/fastscnn/README.md |
|
|
1 |
# Fast-SCNN for Semantic Segmentation |
|
|
2 |
|
|
|
3 |
## Introduction |
|
|
4 |
|
|
|
5 |
<!-- [ALGORITHM] --> |
|
|
6 |
|
|
|
7 |
<a href="">Official Repo</a> |
|
|
8 |
|
|
|
9 |
<a href="https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/fast_scnn.py#L272">Code Snippet</a> |
|
|
10 |
|
|
|
11 |
## Abstract |
|
|
12 |
|
|
|
13 |
<!-- [ABSTRACT] --> |
|
|
14 |
|
|
|
15 |
The encoder-decoder framework is state-of-the-art for offline semantic image segmentation. Since the rise in autonomous systems, real-time computation is increasingly desirable. In this paper, we introduce fast segmentation convolutional neural network (Fast-SCNN), an above real-time semantic segmentation model on high resolution image data (1024x2048px) suited to efficient computation on embedded devices with low memory. Building on existing two-branch methods for fast segmentation, we introduce our `learning to downsample' module which computes low-level features for multiple resolution branches simultaneously. Our network combines spatial detail at high resolution with deep features extracted at lower resolution, yielding an accuracy of 68.0% mean intersection over union at 123.5 frames per second on Cityscapes. We also show that large scale pre-training is unnecessary. We thoroughly validate our metric in experiments with ImageNet pre-training and the coarse labeled data of Cityscapes. Finally, we show even faster computation with competitive results on subsampled inputs, without any network modifications. |
|
|
16 |
|
|
|
17 |
<!-- [IMAGE] --> |
|
|
18 |
<div align=center> |
|
|
19 |
<img src="https://user-images.githubusercontent.com/24582831/142901444-705b4ff4-6d1e-409b-899a-37bf3a6b69ce.png" width="80%"/> |
|
|
20 |
</div> |
|
|
21 |
|
|
|
22 |
<details> |
|
|
23 |
<summary align="right"><a href="https://arxiv.org/abs/1902.04502">Fast-SCNN (ArXiv'2019)</a></summary> |
|
|
24 |
|
|
|
25 |
```latex |
|
|
26 |
@article{poudel2019fast, |
|
|
27 |
title={Fast-scnn: Fast semantic segmentation network}, |
|
|
28 |
author={Poudel, Rudra PK and Liwicki, Stephan and Cipolla, Roberto}, |
|
|
29 |
journal={arXiv preprint arXiv:1902.04502}, |
|
|
30 |
year={2019} |
|
|
31 |
} |
|
|
32 |
``` |
|
|
33 |
|
|
|
34 |
</details> |
|
|
35 |
|
|
|
36 |
## Results and models |
|
|
37 |
|
|
|
38 |
### Cityscapes |
|
|
39 |
|
|
|
40 |
| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | |
|
|
41 |
| --------- | --------- | --------- | ------: | -------- | -------------- | ----: | ------------- | --------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | |
|
|
42 |
| Fast-SCNN | Fast-SCNN | 512x1024 | 160000 | 3.3 | 56.45 | 70.96 | 72.65 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fastscnn/fast_scnn_lr0.12_8x4_160k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fast_scnn/fast_scnn_lr0.12_8x4_160k_cityscapes/fast_scnn_lr0.12_8x4_160k_cityscapes_20210630_164853-0cec9937.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fast_scnn/fast_scnn_lr0.12_8x4_160k_cityscapes/fast_scnn_lr0.12_8x4_160k_cityscapes_20210630_164853.log.json) | |