Switch to side-by-side view

--- a
+++ b/configs/fastscnn/README.md
@@ -0,0 +1,42 @@
+# Fast-SCNN for Semantic Segmentation
+
+## Introduction
+
+<!-- [ALGORITHM] -->
+
+<a href="">Official Repo</a>
+
+<a href="https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/fast_scnn.py#L272">Code Snippet</a>
+
+## Abstract
+
+<!-- [ABSTRACT] -->
+
+The encoder-decoder framework is state-of-the-art for offline semantic image segmentation. Since the rise in autonomous systems, real-time computation is increasingly desirable. In this paper, we introduce fast segmentation convolutional neural network (Fast-SCNN), an above real-time semantic segmentation model on high resolution image data (1024x2048px) suited to efficient computation on embedded devices with low memory. Building on existing two-branch methods for fast segmentation, we introduce our `learning to downsample' module which computes low-level features for multiple resolution branches simultaneously. Our network combines spatial detail at high resolution with deep features extracted at lower resolution, yielding an accuracy of 68.0% mean intersection over union at 123.5 frames per second on Cityscapes. We also show that large scale pre-training is unnecessary. We thoroughly validate our metric in experiments with ImageNet pre-training and the coarse labeled data of Cityscapes. Finally, we show even faster computation with competitive results on subsampled inputs, without any network modifications.
+
+<!-- [IMAGE] -->
+<div align=center>
+<img src="https://user-images.githubusercontent.com/24582831/142901444-705b4ff4-6d1e-409b-899a-37bf3a6b69ce.png" width="80%"/>
+</div>
+
+<details>
+<summary align="right"><a href="https://arxiv.org/abs/1902.04502">Fast-SCNN (ArXiv'2019)</a></summary>
+
+```latex
+@article{poudel2019fast,
+  title={Fast-scnn: Fast semantic segmentation network},
+  author={Poudel, Rudra PK and Liwicki, Stephan and Cipolla, Roberto},
+  journal={arXiv preprint arXiv:1902.04502},
+  year={2019}
+}
+```
+
+</details>
+
+## Results and models
+
+### Cityscapes
+
+| Method    | Backbone  | Crop Size | Lr schd | Mem (GB) | Inf time (fps) |  mIoU | mIoU(ms+flip) | config                                                                                  | download                                                                                                                                                                                                                                                       |
+| --------- | --------- | --------- | ------: | -------- | -------------- | ----: | ------------- | --------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| Fast-SCNN | Fast-SCNN | 512x1024  | 160000 | 3.3 | 56.45 | 70.96 | 72.65 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fastscnn/fast_scnn_lr0.12_8x4_160k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fast_scnn/fast_scnn_lr0.12_8x4_160k_cityscapes/fast_scnn_lr0.12_8x4_160k_cityscapes_20210630_164853-0cec9937.pth) &#124; [log](https://download.openmmlab.com/mmsegmentation/v0.5/fast_scnn/fast_scnn_lr0.12_8x4_160k_cityscapes/fast_scnn_lr0.12_8x4_160k_cityscapes_20210630_164853.log.json) |