--- a +++ b/configs/fastfcn/fastfcn.yml @@ -0,0 +1,235 @@ +Collections: +- Name: fastfcn + Metadata: + Training Data: + - Cityscapes + - ADE20K + Paper: + URL: https://arxiv.org/abs/1903.11816 + Title: 'FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation' + README: configs/fastfcn/README.md + Code: + URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/necks/jpu.py#L12 + Version: v0.18.0 + Converted From: + Code: https://github.com/wuhuikai/FastFCN +Models: +- Name: fastfcn_r50-d32_jpu_aspp_512x1024_80k_cityscapes + In Collection: fastfcn + Metadata: + backbone: R-50-D32 + crop size: (512,1024) + lr schd: 80000 + inference time (ms/im): + - value: 378.79 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,1024) + Training Memory (GB): 5.67 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.12 + mIoU(ms+flip): 80.58 + Config: configs/fastfcn/fastfcn_r50-d32_jpu_aspp_512x1024_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_aspp_512x1024_80k_cityscapes_20210928_053722-5d1a2648.pth +- Name: fastfcn_r50-d32_jpu_aspp_4x4_512x1024_80k_cityscapes + In Collection: fastfcn + Metadata: + backbone: R-50-D32 + crop size: (512,1024) + lr schd: 80000 + Training Memory (GB): 9.79 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.52 + mIoU(ms+flip): 80.91 + Config: configs/fastfcn/fastfcn_r50-d32_jpu_aspp_4x4_512x1024_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_4x4_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_aspp_4x4_512x1024_80k_cityscapes_20210924_214357-72220849.pth +- Name: fastfcn_r50-d32_jpu_psp_512x1024_80k_cityscapes + In Collection: fastfcn + Metadata: + backbone: R-50-D32 + crop size: (512,1024) + lr schd: 80000 + inference time (ms/im): + - value: 227.27 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,1024) + Training Memory (GB): 5.67 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.26 + mIoU(ms+flip): 80.86 + Config: configs/fastfcn/fastfcn_r50-d32_jpu_psp_512x1024_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn/fastfcn_r50-d32_jpu_psp_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_psp_512x1024_80k_cityscapes_20210928_053722-57749bed.pth +- Name: fastfcn_r50-d32_jpu_psp_4x4_512x1024_80k_cityscapes + In Collection: fastfcn + Metadata: + backbone: R-50-D32 + crop size: (512,1024) + lr schd: 80000 + Training Memory (GB): 9.94 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.76 + mIoU(ms+flip): 80.03 + Config: configs/fastfcn/fastfcn_r50-d32_jpu_psp_4x4_512x1024_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_psp_4x4_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_psp_4x4_512x1024_80k_cityscapes_20210925_061841-77e87b0a.pth +- Name: fastfcn_r50-d32_jpu_enc_512x1024_80k_cityscapes + In Collection: fastfcn + Metadata: + backbone: R-50-D32 + crop size: (512,1024) + lr schd: 80000 + inference time (ms/im): + - value: 209.64 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,1024) + Training Memory (GB): 8.15 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.97 + mIoU(ms+flip): 79.92 + Config: configs/fastfcn/fastfcn_r50-d32_jpu_enc_512x1024_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_enc_512x1024_80k_cityscapes_20210928_030036-78da5046.pth +- Name: fastfcn_r50-d32_jpu_enc_4x4_512x1024_80k_cityscapes + In Collection: fastfcn + Metadata: + backbone: R-50-D32 + crop size: (512,1024) + lr schd: 80000 + Training Memory (GB): 15.45 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.6 + mIoU(ms+flip): 80.25 + Config: configs/fastfcn/fastfcn_r50-d32_jpu_enc_4x4_512x1024_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_4x4_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_enc_4x4_512x1024_80k_cityscapes_20210926_093217-e1eb6dbb.pth +- Name: fastfcn_r50-d32_jpu_aspp_512x512_80k_ade20k + In Collection: fastfcn + Metadata: + backbone: R-50-D32 + crop size: (512,1024) + lr schd: 80000 + inference time (ms/im): + - value: 82.92 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,1024) + Training Memory (GB): 8.46 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 41.88 + mIoU(ms+flip): 42.91 + Config: configs/fastfcn/fastfcn_r50-d32_jpu_aspp_512x512_80k_ade20k.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_512x512_80k_ade20k/fastfcn_r50-d32_jpu_aspp_512x512_80k_ade20k_20211013_190619-3aa40f2d.pth +- Name: fastfcn_r50-d32_jpu_aspp_512x512_160k_ade20k + In Collection: fastfcn + Metadata: + backbone: R-50-D32 + crop size: (512,1024) + lr schd: 160000 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 43.58 + mIoU(ms+flip): 44.92 + Config: configs/fastfcn/fastfcn_r50-d32_jpu_aspp_512x512_160k_ade20k.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_512x512_160k_ade20k/fastfcn_r50-d32_jpu_aspp_512x512_160k_ade20k_20211008_152246-27036aee.pth +- Name: fastfcn_r50-d32_jpu_psp_512x512_80k_ade20k + In Collection: fastfcn + Metadata: + backbone: R-50-D32 + crop size: (512,1024) + lr schd: 80000 + inference time (ms/im): + - value: 52.06 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,1024) + Training Memory (GB): 8.02 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 41.4 + mIoU(ms+flip): 42.12 + Config: configs/fastfcn/fastfcn_r50-d32_jpu_psp_512x512_80k_ade20k.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_psp_512x512_80k_ade20k/fastfcn_r50-d32_jpu_psp_512x512_80k_ade20k_20210930_225137-993d07c8.pth +- Name: fastfcn_r50-d32_jpu_psp_512x512_160k_ade20k + In Collection: fastfcn + Metadata: + backbone: R-50-D32 + crop size: (512,1024) + lr schd: 160000 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 42.63 + mIoU(ms+flip): 43.71 + Config: configs/fastfcn/fastfcn_r50-d32_jpu_psp_512x512_160k_ade20k.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_psp_512x512_160k_ade20k/fastfcn_r50-d32_jpu_psp_512x512_160k_ade20k_20211008_105455-e8f5a2fd.pth +- Name: fastfcn_r50-d32_jpu_enc_512x512_80k_ade20k + In Collection: fastfcn + Metadata: + backbone: R-50-D32 + crop size: (512,1024) + lr schd: 80000 + inference time (ms/im): + - value: 58.04 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,1024) + Training Memory (GB): 9.67 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 40.88 + mIoU(ms+flip): 42.36 + Config: configs/fastfcn/fastfcn_r50-d32_jpu_enc_512x512_80k_ade20k.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_512x512_80k_ade20k/fastfcn_r50-d32_jpu_enc_512x512_80k_ade20k_20210930_225214-65aef6dd.pth +- Name: fastfcn_r50-d32_jpu_enc_512x512_160k_ade20k + In Collection: fastfcn + Metadata: + backbone: R-50-D32 + crop size: (512,1024) + lr schd: 160000 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 42.5 + mIoU(ms+flip): 44.21 + Config: configs/fastfcn/fastfcn_r50-d32_jpu_enc_512x512_160k_ade20k.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_512x512_160k_ade20k/fastfcn_r50-d32_jpu_enc_512x512_160k_ade20k_20211008_105456-d875ce3c.pth