|
a |
|
b/configs/erfnet/erfnet.yml |
|
|
1 |
Collections: |
|
|
2 |
- Name: erfnet |
|
|
3 |
Metadata: |
|
|
4 |
Training Data: |
|
|
5 |
- Cityscapes |
|
|
6 |
Paper: |
|
|
7 |
URL: http://www.robesafe.uah.es/personal/eduardo.romera/pdfs/Romera17tits.pdf |
|
|
8 |
Title: 'ERFNet: Efficient Residual Factorized ConvNet for Real-time Semantic Segmentation' |
|
|
9 |
README: configs/erfnet/README.md |
|
|
10 |
Code: |
|
|
11 |
URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.20.0/mmseg/models/backbones/erfnet.py#L321 |
|
|
12 |
Version: v0.20.0 |
|
|
13 |
Converted From: |
|
|
14 |
Code: https://github.com/Eromera/erfnet_pytorch |
|
|
15 |
Models: |
|
|
16 |
- Name: erfnet_fcn_4x4_512x1024_160k_cityscapes |
|
|
17 |
In Collection: erfnet |
|
|
18 |
Metadata: |
|
|
19 |
backbone: ERFNet |
|
|
20 |
crop size: (512,1024) |
|
|
21 |
lr schd: 160000 |
|
|
22 |
inference time (ms/im): |
|
|
23 |
- value: 65.53 |
|
|
24 |
hardware: V100 |
|
|
25 |
backend: PyTorch |
|
|
26 |
batch size: 1 |
|
|
27 |
mode: FP32 |
|
|
28 |
resolution: (512,1024) |
|
|
29 |
Training Memory (GB): 6.04 |
|
|
30 |
Results: |
|
|
31 |
- Task: Semantic Segmentation |
|
|
32 |
Dataset: Cityscapes |
|
|
33 |
Metrics: |
|
|
34 |
mIoU: 71.08 |
|
|
35 |
mIoU(ms+flip): 72.6 |
|
|
36 |
Config: configs/erfnet/erfnet_fcn_4x4_512x1024_160k_cityscapes.py |
|
|
37 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/erfnet/erfnet_fcn_4x4_512x1024_160k_cityscapes/erfnet_fcn_4x4_512x1024_160k_cityscapes_20211126_082056-03d333ed.pth |