|
a |
|
b/configs/encnet/encnet.yml |
|
|
1 |
Collections: |
|
|
2 |
- Name: encnet |
|
|
3 |
Metadata: |
|
|
4 |
Training Data: |
|
|
5 |
- Cityscapes |
|
|
6 |
- ADE20K |
|
|
7 |
Paper: |
|
|
8 |
URL: https://arxiv.org/abs/1803.08904 |
|
|
9 |
Title: Context Encoding for Semantic Segmentation |
|
|
10 |
README: configs/encnet/README.md |
|
|
11 |
Code: |
|
|
12 |
URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/enc_head.py#L63 |
|
|
13 |
Version: v0.17.0 |
|
|
14 |
Converted From: |
|
|
15 |
Code: https://github.com/zhanghang1989/PyTorch-Encoding |
|
|
16 |
Models: |
|
|
17 |
- Name: encnet_r50-d8_512x1024_40k_cityscapes |
|
|
18 |
In Collection: encnet |
|
|
19 |
Metadata: |
|
|
20 |
backbone: R-50-D8 |
|
|
21 |
crop size: (512,1024) |
|
|
22 |
lr schd: 40000 |
|
|
23 |
inference time (ms/im): |
|
|
24 |
- value: 218.34 |
|
|
25 |
hardware: V100 |
|
|
26 |
backend: PyTorch |
|
|
27 |
batch size: 1 |
|
|
28 |
mode: FP32 |
|
|
29 |
resolution: (512,1024) |
|
|
30 |
Training Memory (GB): 8.6 |
|
|
31 |
Results: |
|
|
32 |
- Task: Semantic Segmentation |
|
|
33 |
Dataset: Cityscapes |
|
|
34 |
Metrics: |
|
|
35 |
mIoU: 75.67 |
|
|
36 |
mIoU(ms+flip): 77.08 |
|
|
37 |
Config: configs/encnet/encnet_r50-d8_512x1024_40k_cityscapes.py |
|
|
38 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x1024_40k_cityscapes/encnet_r50-d8_512x1024_40k_cityscapes_20200621_220958-68638a47.pth |
|
|
39 |
- Name: encnet_r101-d8_512x1024_40k_cityscapes |
|
|
40 |
In Collection: encnet |
|
|
41 |
Metadata: |
|
|
42 |
backbone: R-101-D8 |
|
|
43 |
crop size: (512,1024) |
|
|
44 |
lr schd: 40000 |
|
|
45 |
inference time (ms/im): |
|
|
46 |
- value: 375.94 |
|
|
47 |
hardware: V100 |
|
|
48 |
backend: PyTorch |
|
|
49 |
batch size: 1 |
|
|
50 |
mode: FP32 |
|
|
51 |
resolution: (512,1024) |
|
|
52 |
Training Memory (GB): 12.1 |
|
|
53 |
Results: |
|
|
54 |
- Task: Semantic Segmentation |
|
|
55 |
Dataset: Cityscapes |
|
|
56 |
Metrics: |
|
|
57 |
mIoU: 75.81 |
|
|
58 |
mIoU(ms+flip): 77.21 |
|
|
59 |
Config: configs/encnet/encnet_r101-d8_512x1024_40k_cityscapes.py |
|
|
60 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x1024_40k_cityscapes/encnet_r101-d8_512x1024_40k_cityscapes_20200621_220933-35e0a3e8.pth |
|
|
61 |
- Name: encnet_r50-d8_769x769_40k_cityscapes |
|
|
62 |
In Collection: encnet |
|
|
63 |
Metadata: |
|
|
64 |
backbone: R-50-D8 |
|
|
65 |
crop size: (769,769) |
|
|
66 |
lr schd: 40000 |
|
|
67 |
inference time (ms/im): |
|
|
68 |
- value: 549.45 |
|
|
69 |
hardware: V100 |
|
|
70 |
backend: PyTorch |
|
|
71 |
batch size: 1 |
|
|
72 |
mode: FP32 |
|
|
73 |
resolution: (769,769) |
|
|
74 |
Training Memory (GB): 9.8 |
|
|
75 |
Results: |
|
|
76 |
- Task: Semantic Segmentation |
|
|
77 |
Dataset: Cityscapes |
|
|
78 |
Metrics: |
|
|
79 |
mIoU: 76.24 |
|
|
80 |
mIoU(ms+flip): 77.85 |
|
|
81 |
Config: configs/encnet/encnet_r50-d8_769x769_40k_cityscapes.py |
|
|
82 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_769x769_40k_cityscapes/encnet_r50-d8_769x769_40k_cityscapes_20200621_220958-3bcd2884.pth |
|
|
83 |
- Name: encnet_r101-d8_769x769_40k_cityscapes |
|
|
84 |
In Collection: encnet |
|
|
85 |
Metadata: |
|
|
86 |
backbone: R-101-D8 |
|
|
87 |
crop size: (769,769) |
|
|
88 |
lr schd: 40000 |
|
|
89 |
inference time (ms/im): |
|
|
90 |
- value: 793.65 |
|
|
91 |
hardware: V100 |
|
|
92 |
backend: PyTorch |
|
|
93 |
batch size: 1 |
|
|
94 |
mode: FP32 |
|
|
95 |
resolution: (769,769) |
|
|
96 |
Training Memory (GB): 13.7 |
|
|
97 |
Results: |
|
|
98 |
- Task: Semantic Segmentation |
|
|
99 |
Dataset: Cityscapes |
|
|
100 |
Metrics: |
|
|
101 |
mIoU: 74.25 |
|
|
102 |
mIoU(ms+flip): 76.25 |
|
|
103 |
Config: configs/encnet/encnet_r101-d8_769x769_40k_cityscapes.py |
|
|
104 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_769x769_40k_cityscapes/encnet_r101-d8_769x769_40k_cityscapes_20200621_220933-2fafed55.pth |
|
|
105 |
- Name: encnet_r50-d8_512x1024_80k_cityscapes |
|
|
106 |
In Collection: encnet |
|
|
107 |
Metadata: |
|
|
108 |
backbone: R-50-D8 |
|
|
109 |
crop size: (512,1024) |
|
|
110 |
lr schd: 80000 |
|
|
111 |
Results: |
|
|
112 |
- Task: Semantic Segmentation |
|
|
113 |
Dataset: Cityscapes |
|
|
114 |
Metrics: |
|
|
115 |
mIoU: 77.94 |
|
|
116 |
mIoU(ms+flip): 79.13 |
|
|
117 |
Config: configs/encnet/encnet_r50-d8_512x1024_80k_cityscapes.py |
|
|
118 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x1024_80k_cityscapes/encnet_r50-d8_512x1024_80k_cityscapes_20200622_003554-fc5c5624.pth |
|
|
119 |
- Name: encnet_r101-d8_512x1024_80k_cityscapes |
|
|
120 |
In Collection: encnet |
|
|
121 |
Metadata: |
|
|
122 |
backbone: R-101-D8 |
|
|
123 |
crop size: (512,1024) |
|
|
124 |
lr schd: 80000 |
|
|
125 |
Results: |
|
|
126 |
- Task: Semantic Segmentation |
|
|
127 |
Dataset: Cityscapes |
|
|
128 |
Metrics: |
|
|
129 |
mIoU: 78.55 |
|
|
130 |
mIoU(ms+flip): 79.47 |
|
|
131 |
Config: configs/encnet/encnet_r101-d8_512x1024_80k_cityscapes.py |
|
|
132 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x1024_80k_cityscapes/encnet_r101-d8_512x1024_80k_cityscapes_20200622_003555-1de64bec.pth |
|
|
133 |
- Name: encnet_r50-d8_769x769_80k_cityscapes |
|
|
134 |
In Collection: encnet |
|
|
135 |
Metadata: |
|
|
136 |
backbone: R-50-D8 |
|
|
137 |
crop size: (769,769) |
|
|
138 |
lr schd: 80000 |
|
|
139 |
Results: |
|
|
140 |
- Task: Semantic Segmentation |
|
|
141 |
Dataset: Cityscapes |
|
|
142 |
Metrics: |
|
|
143 |
mIoU: 77.44 |
|
|
144 |
mIoU(ms+flip): 78.72 |
|
|
145 |
Config: configs/encnet/encnet_r50-d8_769x769_80k_cityscapes.py |
|
|
146 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_769x769_80k_cityscapes/encnet_r50-d8_769x769_80k_cityscapes_20200622_003554-55096dcb.pth |
|
|
147 |
- Name: encnet_r101-d8_769x769_80k_cityscapes |
|
|
148 |
In Collection: encnet |
|
|
149 |
Metadata: |
|
|
150 |
backbone: R-101-D8 |
|
|
151 |
crop size: (769,769) |
|
|
152 |
lr schd: 80000 |
|
|
153 |
Results: |
|
|
154 |
- Task: Semantic Segmentation |
|
|
155 |
Dataset: Cityscapes |
|
|
156 |
Metrics: |
|
|
157 |
mIoU: 76.1 |
|
|
158 |
mIoU(ms+flip): 76.97 |
|
|
159 |
Config: configs/encnet/encnet_r101-d8_769x769_80k_cityscapes.py |
|
|
160 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_769x769_80k_cityscapes/encnet_r101-d8_769x769_80k_cityscapes_20200622_003555-470ef79d.pth |
|
|
161 |
- Name: encnet_r50-d8_512x512_80k_ade20k |
|
|
162 |
In Collection: encnet |
|
|
163 |
Metadata: |
|
|
164 |
backbone: R-50-D8 |
|
|
165 |
crop size: (512,512) |
|
|
166 |
lr schd: 80000 |
|
|
167 |
inference time (ms/im): |
|
|
168 |
- value: 43.84 |
|
|
169 |
hardware: V100 |
|
|
170 |
backend: PyTorch |
|
|
171 |
batch size: 1 |
|
|
172 |
mode: FP32 |
|
|
173 |
resolution: (512,512) |
|
|
174 |
Training Memory (GB): 10.1 |
|
|
175 |
Results: |
|
|
176 |
- Task: Semantic Segmentation |
|
|
177 |
Dataset: ADE20K |
|
|
178 |
Metrics: |
|
|
179 |
mIoU: 39.53 |
|
|
180 |
mIoU(ms+flip): 41.17 |
|
|
181 |
Config: configs/encnet/encnet_r50-d8_512x512_80k_ade20k.py |
|
|
182 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x512_80k_ade20k/encnet_r50-d8_512x512_80k_ade20k_20200622_042412-44b46b04.pth |
|
|
183 |
- Name: encnet_r101-d8_512x512_80k_ade20k |
|
|
184 |
In Collection: encnet |
|
|
185 |
Metadata: |
|
|
186 |
backbone: R-101-D8 |
|
|
187 |
crop size: (512,512) |
|
|
188 |
lr schd: 80000 |
|
|
189 |
inference time (ms/im): |
|
|
190 |
- value: 67.25 |
|
|
191 |
hardware: V100 |
|
|
192 |
backend: PyTorch |
|
|
193 |
batch size: 1 |
|
|
194 |
mode: FP32 |
|
|
195 |
resolution: (512,512) |
|
|
196 |
Training Memory (GB): 13.6 |
|
|
197 |
Results: |
|
|
198 |
- Task: Semantic Segmentation |
|
|
199 |
Dataset: ADE20K |
|
|
200 |
Metrics: |
|
|
201 |
mIoU: 42.11 |
|
|
202 |
mIoU(ms+flip): 43.61 |
|
|
203 |
Config: configs/encnet/encnet_r101-d8_512x512_80k_ade20k.py |
|
|
204 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x512_80k_ade20k/encnet_r101-d8_512x512_80k_ade20k_20200622_101128-dd35e237.pth |
|
|
205 |
- Name: encnet_r50-d8_512x512_160k_ade20k |
|
|
206 |
In Collection: encnet |
|
|
207 |
Metadata: |
|
|
208 |
backbone: R-50-D8 |
|
|
209 |
crop size: (512,512) |
|
|
210 |
lr schd: 160000 |
|
|
211 |
Results: |
|
|
212 |
- Task: Semantic Segmentation |
|
|
213 |
Dataset: ADE20K |
|
|
214 |
Metrics: |
|
|
215 |
mIoU: 40.1 |
|
|
216 |
mIoU(ms+flip): 41.71 |
|
|
217 |
Config: configs/encnet/encnet_r50-d8_512x512_160k_ade20k.py |
|
|
218 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x512_160k_ade20k/encnet_r50-d8_512x512_160k_ade20k_20200622_101059-b2db95e0.pth |
|
|
219 |
- Name: encnet_r101-d8_512x512_160k_ade20k |
|
|
220 |
In Collection: encnet |
|
|
221 |
Metadata: |
|
|
222 |
backbone: R-101-D8 |
|
|
223 |
crop size: (512,512) |
|
|
224 |
lr schd: 160000 |
|
|
225 |
Results: |
|
|
226 |
- Task: Semantic Segmentation |
|
|
227 |
Dataset: ADE20K |
|
|
228 |
Metrics: |
|
|
229 |
mIoU: 42.61 |
|
|
230 |
mIoU(ms+flip): 44.01 |
|
|
231 |
Config: configs/encnet/encnet_r101-d8_512x512_160k_ade20k.py |
|
|
232 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x512_160k_ade20k/encnet_r101-d8_512x512_160k_ade20k_20200622_073348-7989641f.pth |