Diff of /configs/encnet/encnet.yml [000000] .. [4e96d3]

Switch to unified view

a b/configs/encnet/encnet.yml
1
Collections:
2
- Name: encnet
3
  Metadata:
4
    Training Data:
5
    - Cityscapes
6
    - ADE20K
7
  Paper:
8
    URL: https://arxiv.org/abs/1803.08904
9
    Title: Context Encoding for Semantic Segmentation
10
  README: configs/encnet/README.md
11
  Code:
12
    URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/enc_head.py#L63
13
    Version: v0.17.0
14
  Converted From:
15
    Code: https://github.com/zhanghang1989/PyTorch-Encoding
16
Models:
17
- Name: encnet_r50-d8_512x1024_40k_cityscapes
18
  In Collection: encnet
19
  Metadata:
20
    backbone: R-50-D8
21
    crop size: (512,1024)
22
    lr schd: 40000
23
    inference time (ms/im):
24
    - value: 218.34
25
      hardware: V100
26
      backend: PyTorch
27
      batch size: 1
28
      mode: FP32
29
      resolution: (512,1024)
30
    Training Memory (GB): 8.6
31
  Results:
32
  - Task: Semantic Segmentation
33
    Dataset: Cityscapes
34
    Metrics:
35
      mIoU: 75.67
36
      mIoU(ms+flip): 77.08
37
  Config: configs/encnet/encnet_r50-d8_512x1024_40k_cityscapes.py
38
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x1024_40k_cityscapes/encnet_r50-d8_512x1024_40k_cityscapes_20200621_220958-68638a47.pth
39
- Name: encnet_r101-d8_512x1024_40k_cityscapes
40
  In Collection: encnet
41
  Metadata:
42
    backbone: R-101-D8
43
    crop size: (512,1024)
44
    lr schd: 40000
45
    inference time (ms/im):
46
    - value: 375.94
47
      hardware: V100
48
      backend: PyTorch
49
      batch size: 1
50
      mode: FP32
51
      resolution: (512,1024)
52
    Training Memory (GB): 12.1
53
  Results:
54
  - Task: Semantic Segmentation
55
    Dataset: Cityscapes
56
    Metrics:
57
      mIoU: 75.81
58
      mIoU(ms+flip): 77.21
59
  Config: configs/encnet/encnet_r101-d8_512x1024_40k_cityscapes.py
60
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x1024_40k_cityscapes/encnet_r101-d8_512x1024_40k_cityscapes_20200621_220933-35e0a3e8.pth
61
- Name: encnet_r50-d8_769x769_40k_cityscapes
62
  In Collection: encnet
63
  Metadata:
64
    backbone: R-50-D8
65
    crop size: (769,769)
66
    lr schd: 40000
67
    inference time (ms/im):
68
    - value: 549.45
69
      hardware: V100
70
      backend: PyTorch
71
      batch size: 1
72
      mode: FP32
73
      resolution: (769,769)
74
    Training Memory (GB): 9.8
75
  Results:
76
  - Task: Semantic Segmentation
77
    Dataset: Cityscapes
78
    Metrics:
79
      mIoU: 76.24
80
      mIoU(ms+flip): 77.85
81
  Config: configs/encnet/encnet_r50-d8_769x769_40k_cityscapes.py
82
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_769x769_40k_cityscapes/encnet_r50-d8_769x769_40k_cityscapes_20200621_220958-3bcd2884.pth
83
- Name: encnet_r101-d8_769x769_40k_cityscapes
84
  In Collection: encnet
85
  Metadata:
86
    backbone: R-101-D8
87
    crop size: (769,769)
88
    lr schd: 40000
89
    inference time (ms/im):
90
    - value: 793.65
91
      hardware: V100
92
      backend: PyTorch
93
      batch size: 1
94
      mode: FP32
95
      resolution: (769,769)
96
    Training Memory (GB): 13.7
97
  Results:
98
  - Task: Semantic Segmentation
99
    Dataset: Cityscapes
100
    Metrics:
101
      mIoU: 74.25
102
      mIoU(ms+flip): 76.25
103
  Config: configs/encnet/encnet_r101-d8_769x769_40k_cityscapes.py
104
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_769x769_40k_cityscapes/encnet_r101-d8_769x769_40k_cityscapes_20200621_220933-2fafed55.pth
105
- Name: encnet_r50-d8_512x1024_80k_cityscapes
106
  In Collection: encnet
107
  Metadata:
108
    backbone: R-50-D8
109
    crop size: (512,1024)
110
    lr schd: 80000
111
  Results:
112
  - Task: Semantic Segmentation
113
    Dataset: Cityscapes
114
    Metrics:
115
      mIoU: 77.94
116
      mIoU(ms+flip): 79.13
117
  Config: configs/encnet/encnet_r50-d8_512x1024_80k_cityscapes.py
118
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x1024_80k_cityscapes/encnet_r50-d8_512x1024_80k_cityscapes_20200622_003554-fc5c5624.pth
119
- Name: encnet_r101-d8_512x1024_80k_cityscapes
120
  In Collection: encnet
121
  Metadata:
122
    backbone: R-101-D8
123
    crop size: (512,1024)
124
    lr schd: 80000
125
  Results:
126
  - Task: Semantic Segmentation
127
    Dataset: Cityscapes
128
    Metrics:
129
      mIoU: 78.55
130
      mIoU(ms+flip): 79.47
131
  Config: configs/encnet/encnet_r101-d8_512x1024_80k_cityscapes.py
132
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x1024_80k_cityscapes/encnet_r101-d8_512x1024_80k_cityscapes_20200622_003555-1de64bec.pth
133
- Name: encnet_r50-d8_769x769_80k_cityscapes
134
  In Collection: encnet
135
  Metadata:
136
    backbone: R-50-D8
137
    crop size: (769,769)
138
    lr schd: 80000
139
  Results:
140
  - Task: Semantic Segmentation
141
    Dataset: Cityscapes
142
    Metrics:
143
      mIoU: 77.44
144
      mIoU(ms+flip): 78.72
145
  Config: configs/encnet/encnet_r50-d8_769x769_80k_cityscapes.py
146
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_769x769_80k_cityscapes/encnet_r50-d8_769x769_80k_cityscapes_20200622_003554-55096dcb.pth
147
- Name: encnet_r101-d8_769x769_80k_cityscapes
148
  In Collection: encnet
149
  Metadata:
150
    backbone: R-101-D8
151
    crop size: (769,769)
152
    lr schd: 80000
153
  Results:
154
  - Task: Semantic Segmentation
155
    Dataset: Cityscapes
156
    Metrics:
157
      mIoU: 76.1
158
      mIoU(ms+flip): 76.97
159
  Config: configs/encnet/encnet_r101-d8_769x769_80k_cityscapes.py
160
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_769x769_80k_cityscapes/encnet_r101-d8_769x769_80k_cityscapes_20200622_003555-470ef79d.pth
161
- Name: encnet_r50-d8_512x512_80k_ade20k
162
  In Collection: encnet
163
  Metadata:
164
    backbone: R-50-D8
165
    crop size: (512,512)
166
    lr schd: 80000
167
    inference time (ms/im):
168
    - value: 43.84
169
      hardware: V100
170
      backend: PyTorch
171
      batch size: 1
172
      mode: FP32
173
      resolution: (512,512)
174
    Training Memory (GB): 10.1
175
  Results:
176
  - Task: Semantic Segmentation
177
    Dataset: ADE20K
178
    Metrics:
179
      mIoU: 39.53
180
      mIoU(ms+flip): 41.17
181
  Config: configs/encnet/encnet_r50-d8_512x512_80k_ade20k.py
182
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x512_80k_ade20k/encnet_r50-d8_512x512_80k_ade20k_20200622_042412-44b46b04.pth
183
- Name: encnet_r101-d8_512x512_80k_ade20k
184
  In Collection: encnet
185
  Metadata:
186
    backbone: R-101-D8
187
    crop size: (512,512)
188
    lr schd: 80000
189
    inference time (ms/im):
190
    - value: 67.25
191
      hardware: V100
192
      backend: PyTorch
193
      batch size: 1
194
      mode: FP32
195
      resolution: (512,512)
196
    Training Memory (GB): 13.6
197
  Results:
198
  - Task: Semantic Segmentation
199
    Dataset: ADE20K
200
    Metrics:
201
      mIoU: 42.11
202
      mIoU(ms+flip): 43.61
203
  Config: configs/encnet/encnet_r101-d8_512x512_80k_ade20k.py
204
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x512_80k_ade20k/encnet_r101-d8_512x512_80k_ade20k_20200622_101128-dd35e237.pth
205
- Name: encnet_r50-d8_512x512_160k_ade20k
206
  In Collection: encnet
207
  Metadata:
208
    backbone: R-50-D8
209
    crop size: (512,512)
210
    lr schd: 160000
211
  Results:
212
  - Task: Semantic Segmentation
213
    Dataset: ADE20K
214
    Metrics:
215
      mIoU: 40.1
216
      mIoU(ms+flip): 41.71
217
  Config: configs/encnet/encnet_r50-d8_512x512_160k_ade20k.py
218
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x512_160k_ade20k/encnet_r50-d8_512x512_160k_ade20k_20200622_101059-b2db95e0.pth
219
- Name: encnet_r101-d8_512x512_160k_ade20k
220
  In Collection: encnet
221
  Metadata:
222
    backbone: R-101-D8
223
    crop size: (512,512)
224
    lr schd: 160000
225
  Results:
226
  - Task: Semantic Segmentation
227
    Dataset: ADE20K
228
    Metrics:
229
      mIoU: 42.61
230
      mIoU(ms+flip): 44.01
231
  Config: configs/encnet/encnet_r101-d8_512x512_160k_ade20k.py
232
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x512_160k_ade20k/encnet_r101-d8_512x512_160k_ade20k_20200622_073348-7989641f.pth