--- a +++ b/configs/encnet/encnet.yml @@ -0,0 +1,232 @@ +Collections: +- Name: encnet + Metadata: + Training Data: + - Cityscapes + - ADE20K + Paper: + URL: https://arxiv.org/abs/1803.08904 + Title: Context Encoding for Semantic Segmentation + README: configs/encnet/README.md + Code: + URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/enc_head.py#L63 + Version: v0.17.0 + Converted From: + Code: https://github.com/zhanghang1989/PyTorch-Encoding +Models: +- Name: encnet_r50-d8_512x1024_40k_cityscapes + In Collection: encnet + Metadata: + backbone: R-50-D8 + crop size: (512,1024) + lr schd: 40000 + inference time (ms/im): + - value: 218.34 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,1024) + Training Memory (GB): 8.6 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 75.67 + mIoU(ms+flip): 77.08 + Config: configs/encnet/encnet_r50-d8_512x1024_40k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x1024_40k_cityscapes/encnet_r50-d8_512x1024_40k_cityscapes_20200621_220958-68638a47.pth +- Name: encnet_r101-d8_512x1024_40k_cityscapes + In Collection: encnet + Metadata: + backbone: R-101-D8 + crop size: (512,1024) + lr schd: 40000 + inference time (ms/im): + - value: 375.94 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,1024) + Training Memory (GB): 12.1 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 75.81 + mIoU(ms+flip): 77.21 + Config: configs/encnet/encnet_r101-d8_512x1024_40k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x1024_40k_cityscapes/encnet_r101-d8_512x1024_40k_cityscapes_20200621_220933-35e0a3e8.pth +- Name: encnet_r50-d8_769x769_40k_cityscapes + In Collection: encnet + Metadata: + backbone: R-50-D8 + crop size: (769,769) + lr schd: 40000 + inference time (ms/im): + - value: 549.45 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (769,769) + Training Memory (GB): 9.8 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 76.24 + mIoU(ms+flip): 77.85 + Config: configs/encnet/encnet_r50-d8_769x769_40k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_769x769_40k_cityscapes/encnet_r50-d8_769x769_40k_cityscapes_20200621_220958-3bcd2884.pth +- Name: encnet_r101-d8_769x769_40k_cityscapes + In Collection: encnet + Metadata: + backbone: R-101-D8 + crop size: (769,769) + lr schd: 40000 + inference time (ms/im): + - value: 793.65 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (769,769) + Training Memory (GB): 13.7 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 74.25 + mIoU(ms+flip): 76.25 + Config: configs/encnet/encnet_r101-d8_769x769_40k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_769x769_40k_cityscapes/encnet_r101-d8_769x769_40k_cityscapes_20200621_220933-2fafed55.pth +- Name: encnet_r50-d8_512x1024_80k_cityscapes + In Collection: encnet + Metadata: + backbone: R-50-D8 + crop size: (512,1024) + lr schd: 80000 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.94 + mIoU(ms+flip): 79.13 + Config: configs/encnet/encnet_r50-d8_512x1024_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x1024_80k_cityscapes/encnet_r50-d8_512x1024_80k_cityscapes_20200622_003554-fc5c5624.pth +- Name: encnet_r101-d8_512x1024_80k_cityscapes + In Collection: encnet + Metadata: + backbone: R-101-D8 + crop size: (512,1024) + lr schd: 80000 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.55 + mIoU(ms+flip): 79.47 + Config: configs/encnet/encnet_r101-d8_512x1024_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x1024_80k_cityscapes/encnet_r101-d8_512x1024_80k_cityscapes_20200622_003555-1de64bec.pth +- Name: encnet_r50-d8_769x769_80k_cityscapes + In Collection: encnet + Metadata: + backbone: R-50-D8 + crop size: (769,769) + lr schd: 80000 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.44 + mIoU(ms+flip): 78.72 + Config: configs/encnet/encnet_r50-d8_769x769_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_769x769_80k_cityscapes/encnet_r50-d8_769x769_80k_cityscapes_20200622_003554-55096dcb.pth +- Name: encnet_r101-d8_769x769_80k_cityscapes + In Collection: encnet + Metadata: + backbone: R-101-D8 + crop size: (769,769) + lr schd: 80000 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 76.1 + mIoU(ms+flip): 76.97 + Config: configs/encnet/encnet_r101-d8_769x769_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_769x769_80k_cityscapes/encnet_r101-d8_769x769_80k_cityscapes_20200622_003555-470ef79d.pth +- Name: encnet_r50-d8_512x512_80k_ade20k + In Collection: encnet + Metadata: + backbone: R-50-D8 + crop size: (512,512) + lr schd: 80000 + inference time (ms/im): + - value: 43.84 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,512) + Training Memory (GB): 10.1 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 39.53 + mIoU(ms+flip): 41.17 + Config: configs/encnet/encnet_r50-d8_512x512_80k_ade20k.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x512_80k_ade20k/encnet_r50-d8_512x512_80k_ade20k_20200622_042412-44b46b04.pth +- Name: encnet_r101-d8_512x512_80k_ade20k + In Collection: encnet + Metadata: + backbone: R-101-D8 + crop size: (512,512) + lr schd: 80000 + inference time (ms/im): + - value: 67.25 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,512) + Training Memory (GB): 13.6 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 42.11 + mIoU(ms+flip): 43.61 + Config: configs/encnet/encnet_r101-d8_512x512_80k_ade20k.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x512_80k_ade20k/encnet_r101-d8_512x512_80k_ade20k_20200622_101128-dd35e237.pth +- Name: encnet_r50-d8_512x512_160k_ade20k + In Collection: encnet + Metadata: + backbone: R-50-D8 + crop size: (512,512) + lr schd: 160000 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 40.1 + mIoU(ms+flip): 41.71 + Config: configs/encnet/encnet_r50-d8_512x512_160k_ade20k.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x512_160k_ade20k/encnet_r50-d8_512x512_160k_ade20k_20200622_101059-b2db95e0.pth +- Name: encnet_r101-d8_512x512_160k_ade20k + In Collection: encnet + Metadata: + backbone: R-101-D8 + crop size: (512,512) + lr schd: 160000 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 42.61 + mIoU(ms+flip): 44.01 + Config: configs/encnet/encnet_r101-d8_512x512_160k_ade20k.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x512_160k_ade20k/encnet_r101-d8_512x512_160k_ade20k_20200622_073348-7989641f.pth