--- a +++ b/configs/emanet/emanet.yml @@ -0,0 +1,103 @@ +Collections: +- Name: emanet + Metadata: + Training Data: + - Cityscapes + Paper: + URL: https://arxiv.org/abs/1907.13426 + Title: Expectation-Maximization Attention Networks for Semantic Segmentation + README: configs/emanet/README.md + Code: + URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ema_head.py#L80 + Version: v0.17.0 + Converted From: + Code: https://xialipku.github.io/EMANet +Models: +- Name: emanet_r50-d8_512x1024_80k_cityscapes + In Collection: emanet + Metadata: + backbone: R-50-D8 + crop size: (512,1024) + lr schd: 80000 + inference time (ms/im): + - value: 218.34 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,1024) + Training Memory (GB): 5.4 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.59 + mIoU(ms+flip): 79.44 + Config: configs/emanet/emanet_r50-d8_512x1024_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r50-d8_512x1024_80k_cityscapes/emanet_r50-d8_512x1024_80k_cityscapes_20200901_100301-c43fcef1.pth +- Name: emanet_r101-d8_512x1024_80k_cityscapes + In Collection: emanet + Metadata: + backbone: R-101-D8 + crop size: (512,1024) + lr schd: 80000 + inference time (ms/im): + - value: 348.43 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,1024) + Training Memory (GB): 6.2 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.1 + mIoU(ms+flip): 81.21 + Config: configs/emanet/emanet_r101-d8_512x1024_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r101-d8_512x1024_80k_cityscapes/emanet_r101-d8_512x1024_80k_cityscapes_20200901_100301-2d970745.pth +- Name: emanet_r50-d8_769x769_80k_cityscapes + In Collection: emanet + Metadata: + backbone: R-50-D8 + crop size: (769,769) + lr schd: 80000 + inference time (ms/im): + - value: 507.61 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (769,769) + Training Memory (GB): 8.9 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.33 + mIoU(ms+flip): 80.49 + Config: configs/emanet/emanet_r50-d8_769x769_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r50-d8_769x769_80k_cityscapes/emanet_r50-d8_769x769_80k_cityscapes_20200901_100301-16f8de52.pth +- Name: emanet_r101-d8_769x769_80k_cityscapes + In Collection: emanet + Metadata: + backbone: R-101-D8 + crop size: (769,769) + lr schd: 80000 + inference time (ms/im): + - value: 819.67 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (769,769) + Training Memory (GB): 10.1 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.62 + mIoU(ms+flip): 81.0 + Config: configs/emanet/emanet_r101-d8_769x769_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r101-d8_769x769_80k_cityscapes/emanet_r101-d8_769x769_80k_cityscapes_20200901_100301-47a324ce.pth