Diff of /configs/emanet/emanet.yml [000000] .. [4e96d3]

Switch to unified view

a b/configs/emanet/emanet.yml
1
Collections:
2
- Name: emanet
3
  Metadata:
4
    Training Data:
5
    - Cityscapes
6
  Paper:
7
    URL: https://arxiv.org/abs/1907.13426
8
    Title: Expectation-Maximization Attention Networks for Semantic Segmentation
9
  README: configs/emanet/README.md
10
  Code:
11
    URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ema_head.py#L80
12
    Version: v0.17.0
13
  Converted From:
14
    Code: https://xialipku.github.io/EMANet
15
Models:
16
- Name: emanet_r50-d8_512x1024_80k_cityscapes
17
  In Collection: emanet
18
  Metadata:
19
    backbone: R-50-D8
20
    crop size: (512,1024)
21
    lr schd: 80000
22
    inference time (ms/im):
23
    - value: 218.34
24
      hardware: V100
25
      backend: PyTorch
26
      batch size: 1
27
      mode: FP32
28
      resolution: (512,1024)
29
    Training Memory (GB): 5.4
30
  Results:
31
  - Task: Semantic Segmentation
32
    Dataset: Cityscapes
33
    Metrics:
34
      mIoU: 77.59
35
      mIoU(ms+flip): 79.44
36
  Config: configs/emanet/emanet_r50-d8_512x1024_80k_cityscapes.py
37
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r50-d8_512x1024_80k_cityscapes/emanet_r50-d8_512x1024_80k_cityscapes_20200901_100301-c43fcef1.pth
38
- Name: emanet_r101-d8_512x1024_80k_cityscapes
39
  In Collection: emanet
40
  Metadata:
41
    backbone: R-101-D8
42
    crop size: (512,1024)
43
    lr schd: 80000
44
    inference time (ms/im):
45
    - value: 348.43
46
      hardware: V100
47
      backend: PyTorch
48
      batch size: 1
49
      mode: FP32
50
      resolution: (512,1024)
51
    Training Memory (GB): 6.2
52
  Results:
53
  - Task: Semantic Segmentation
54
    Dataset: Cityscapes
55
    Metrics:
56
      mIoU: 79.1
57
      mIoU(ms+flip): 81.21
58
  Config: configs/emanet/emanet_r101-d8_512x1024_80k_cityscapes.py
59
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r101-d8_512x1024_80k_cityscapes/emanet_r101-d8_512x1024_80k_cityscapes_20200901_100301-2d970745.pth
60
- Name: emanet_r50-d8_769x769_80k_cityscapes
61
  In Collection: emanet
62
  Metadata:
63
    backbone: R-50-D8
64
    crop size: (769,769)
65
    lr schd: 80000
66
    inference time (ms/im):
67
    - value: 507.61
68
      hardware: V100
69
      backend: PyTorch
70
      batch size: 1
71
      mode: FP32
72
      resolution: (769,769)
73
    Training Memory (GB): 8.9
74
  Results:
75
  - Task: Semantic Segmentation
76
    Dataset: Cityscapes
77
    Metrics:
78
      mIoU: 79.33
79
      mIoU(ms+flip): 80.49
80
  Config: configs/emanet/emanet_r50-d8_769x769_80k_cityscapes.py
81
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r50-d8_769x769_80k_cityscapes/emanet_r50-d8_769x769_80k_cityscapes_20200901_100301-16f8de52.pth
82
- Name: emanet_r101-d8_769x769_80k_cityscapes
83
  In Collection: emanet
84
  Metadata:
85
    backbone: R-101-D8
86
    crop size: (769,769)
87
    lr schd: 80000
88
    inference time (ms/im):
89
    - value: 819.67
90
      hardware: V100
91
      backend: PyTorch
92
      batch size: 1
93
      mode: FP32
94
      resolution: (769,769)
95
    Training Memory (GB): 10.1
96
  Results:
97
  - Task: Semantic Segmentation
98
    Dataset: Cityscapes
99
    Metrics:
100
      mIoU: 79.62
101
      mIoU(ms+flip): 81.0
102
  Config: configs/emanet/emanet_r101-d8_769x769_80k_cityscapes.py
103
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r101-d8_769x769_80k_cityscapes/emanet_r101-d8_769x769_80k_cityscapes_20200901_100301-47a324ce.pth