|
a |
|
b/configs/emanet/emanet.yml |
|
|
1 |
Collections: |
|
|
2 |
- Name: emanet |
|
|
3 |
Metadata: |
|
|
4 |
Training Data: |
|
|
5 |
- Cityscapes |
|
|
6 |
Paper: |
|
|
7 |
URL: https://arxiv.org/abs/1907.13426 |
|
|
8 |
Title: Expectation-Maximization Attention Networks for Semantic Segmentation |
|
|
9 |
README: configs/emanet/README.md |
|
|
10 |
Code: |
|
|
11 |
URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ema_head.py#L80 |
|
|
12 |
Version: v0.17.0 |
|
|
13 |
Converted From: |
|
|
14 |
Code: https://xialipku.github.io/EMANet |
|
|
15 |
Models: |
|
|
16 |
- Name: emanet_r50-d8_512x1024_80k_cityscapes |
|
|
17 |
In Collection: emanet |
|
|
18 |
Metadata: |
|
|
19 |
backbone: R-50-D8 |
|
|
20 |
crop size: (512,1024) |
|
|
21 |
lr schd: 80000 |
|
|
22 |
inference time (ms/im): |
|
|
23 |
- value: 218.34 |
|
|
24 |
hardware: V100 |
|
|
25 |
backend: PyTorch |
|
|
26 |
batch size: 1 |
|
|
27 |
mode: FP32 |
|
|
28 |
resolution: (512,1024) |
|
|
29 |
Training Memory (GB): 5.4 |
|
|
30 |
Results: |
|
|
31 |
- Task: Semantic Segmentation |
|
|
32 |
Dataset: Cityscapes |
|
|
33 |
Metrics: |
|
|
34 |
mIoU: 77.59 |
|
|
35 |
mIoU(ms+flip): 79.44 |
|
|
36 |
Config: configs/emanet/emanet_r50-d8_512x1024_80k_cityscapes.py |
|
|
37 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r50-d8_512x1024_80k_cityscapes/emanet_r50-d8_512x1024_80k_cityscapes_20200901_100301-c43fcef1.pth |
|
|
38 |
- Name: emanet_r101-d8_512x1024_80k_cityscapes |
|
|
39 |
In Collection: emanet |
|
|
40 |
Metadata: |
|
|
41 |
backbone: R-101-D8 |
|
|
42 |
crop size: (512,1024) |
|
|
43 |
lr schd: 80000 |
|
|
44 |
inference time (ms/im): |
|
|
45 |
- value: 348.43 |
|
|
46 |
hardware: V100 |
|
|
47 |
backend: PyTorch |
|
|
48 |
batch size: 1 |
|
|
49 |
mode: FP32 |
|
|
50 |
resolution: (512,1024) |
|
|
51 |
Training Memory (GB): 6.2 |
|
|
52 |
Results: |
|
|
53 |
- Task: Semantic Segmentation |
|
|
54 |
Dataset: Cityscapes |
|
|
55 |
Metrics: |
|
|
56 |
mIoU: 79.1 |
|
|
57 |
mIoU(ms+flip): 81.21 |
|
|
58 |
Config: configs/emanet/emanet_r101-d8_512x1024_80k_cityscapes.py |
|
|
59 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r101-d8_512x1024_80k_cityscapes/emanet_r101-d8_512x1024_80k_cityscapes_20200901_100301-2d970745.pth |
|
|
60 |
- Name: emanet_r50-d8_769x769_80k_cityscapes |
|
|
61 |
In Collection: emanet |
|
|
62 |
Metadata: |
|
|
63 |
backbone: R-50-D8 |
|
|
64 |
crop size: (769,769) |
|
|
65 |
lr schd: 80000 |
|
|
66 |
inference time (ms/im): |
|
|
67 |
- value: 507.61 |
|
|
68 |
hardware: V100 |
|
|
69 |
backend: PyTorch |
|
|
70 |
batch size: 1 |
|
|
71 |
mode: FP32 |
|
|
72 |
resolution: (769,769) |
|
|
73 |
Training Memory (GB): 8.9 |
|
|
74 |
Results: |
|
|
75 |
- Task: Semantic Segmentation |
|
|
76 |
Dataset: Cityscapes |
|
|
77 |
Metrics: |
|
|
78 |
mIoU: 79.33 |
|
|
79 |
mIoU(ms+flip): 80.49 |
|
|
80 |
Config: configs/emanet/emanet_r50-d8_769x769_80k_cityscapes.py |
|
|
81 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r50-d8_769x769_80k_cityscapes/emanet_r50-d8_769x769_80k_cityscapes_20200901_100301-16f8de52.pth |
|
|
82 |
- Name: emanet_r101-d8_769x769_80k_cityscapes |
|
|
83 |
In Collection: emanet |
|
|
84 |
Metadata: |
|
|
85 |
backbone: R-101-D8 |
|
|
86 |
crop size: (769,769) |
|
|
87 |
lr schd: 80000 |
|
|
88 |
inference time (ms/im): |
|
|
89 |
- value: 819.67 |
|
|
90 |
hardware: V100 |
|
|
91 |
backend: PyTorch |
|
|
92 |
batch size: 1 |
|
|
93 |
mode: FP32 |
|
|
94 |
resolution: (769,769) |
|
|
95 |
Training Memory (GB): 10.1 |
|
|
96 |
Results: |
|
|
97 |
- Task: Semantic Segmentation |
|
|
98 |
Dataset: Cityscapes |
|
|
99 |
Metrics: |
|
|
100 |
mIoU: 79.62 |
|
|
101 |
mIoU(ms+flip): 81.0 |
|
|
102 |
Config: configs/emanet/emanet_r101-d8_769x769_80k_cityscapes.py |
|
|
103 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r101-d8_769x769_80k_cityscapes/emanet_r101-d8_769x769_80k_cityscapes_20200901_100301-47a324ce.pth |