Diff of /configs/dnlnet/dnlnet.yml [000000] .. [4e96d3]

Switch to unified view

a b/configs/dnlnet/dnlnet.yml
1
Collections:
2
- Name: dnlnet
3
  Metadata:
4
    Training Data:
5
    - Cityscapes
6
    - ADE20K
7
  Paper:
8
    URL: https://arxiv.org/abs/2006.06668
9
    Title: Disentangled Non-Local Neural Networks
10
  README: configs/dnlnet/README.md
11
  Code:
12
    URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dnl_head.py#L88
13
    Version: v0.17.0
14
  Converted From:
15
    Code: https://github.com/yinmh17/DNL-Semantic-Segmentation
16
Models:
17
- Name: dnl_r50-d8_512x1024_40k_cityscapes
18
  In Collection: dnlnet
19
  Metadata:
20
    backbone: R-50-D8
21
    crop size: (512,1024)
22
    lr schd: 40000
23
    inference time (ms/im):
24
    - value: 390.62
25
      hardware: V100
26
      backend: PyTorch
27
      batch size: 1
28
      mode: FP32
29
      resolution: (512,1024)
30
    Training Memory (GB): 7.3
31
  Results:
32
  - Task: Semantic Segmentation
33
    Dataset: Cityscapes
34
    Metrics:
35
      mIoU: 78.61
36
  Config: configs/dnlnet/dnl_r50-d8_512x1024_40k_cityscapes.py
37
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x1024_40k_cityscapes/dnl_r50-d8_512x1024_40k_cityscapes_20200904_233629-53d4ea93.pth
38
- Name: dnl_r101-d8_512x1024_40k_cityscapes
39
  In Collection: dnlnet
40
  Metadata:
41
    backbone: R-101-D8
42
    crop size: (512,1024)
43
    lr schd: 40000
44
    inference time (ms/im):
45
    - value: 510.2
46
      hardware: V100
47
      backend: PyTorch
48
      batch size: 1
49
      mode: FP32
50
      resolution: (512,1024)
51
    Training Memory (GB): 10.9
52
  Results:
53
  - Task: Semantic Segmentation
54
    Dataset: Cityscapes
55
    Metrics:
56
      mIoU: 78.31
57
  Config: configs/dnlnet/dnl_r101-d8_512x1024_40k_cityscapes.py
58
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x1024_40k_cityscapes/dnl_r101-d8_512x1024_40k_cityscapes_20200904_233629-9928ffef.pth
59
- Name: dnl_r50-d8_769x769_40k_cityscapes
60
  In Collection: dnlnet
61
  Metadata:
62
    backbone: R-50-D8
63
    crop size: (769,769)
64
    lr schd: 40000
65
    inference time (ms/im):
66
    - value: 666.67
67
      hardware: V100
68
      backend: PyTorch
69
      batch size: 1
70
      mode: FP32
71
      resolution: (769,769)
72
    Training Memory (GB): 9.2
73
  Results:
74
  - Task: Semantic Segmentation
75
    Dataset: Cityscapes
76
    Metrics:
77
      mIoU: 78.44
78
      mIoU(ms+flip): 80.27
79
  Config: configs/dnlnet/dnl_r50-d8_769x769_40k_cityscapes.py
80
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_769x769_40k_cityscapes/dnl_r50-d8_769x769_40k_cityscapes_20200820_232206-0f283785.pth
81
- Name: dnl_r101-d8_769x769_40k_cityscapes
82
  In Collection: dnlnet
83
  Metadata:
84
    backbone: R-101-D8
85
    crop size: (769,769)
86
    lr schd: 40000
87
    inference time (ms/im):
88
    - value: 980.39
89
      hardware: V100
90
      backend: PyTorch
91
      batch size: 1
92
      mode: FP32
93
      resolution: (769,769)
94
    Training Memory (GB): 12.6
95
  Results:
96
  - Task: Semantic Segmentation
97
    Dataset: Cityscapes
98
    Metrics:
99
      mIoU: 76.39
100
      mIoU(ms+flip): 77.77
101
  Config: configs/dnlnet/dnl_r101-d8_769x769_40k_cityscapes.py
102
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_769x769_40k_cityscapes/dnl_r101-d8_769x769_40k_cityscapes_20200820_171256-76c596df.pth
103
- Name: dnl_r50-d8_512x1024_80k_cityscapes
104
  In Collection: dnlnet
105
  Metadata:
106
    backbone: R-50-D8
107
    crop size: (512,1024)
108
    lr schd: 80000
109
  Results:
110
  - Task: Semantic Segmentation
111
    Dataset: Cityscapes
112
    Metrics:
113
      mIoU: 79.33
114
  Config: configs/dnlnet/dnl_r50-d8_512x1024_80k_cityscapes.py
115
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x1024_80k_cityscapes/dnl_r50-d8_512x1024_80k_cityscapes_20200904_233629-58b2f778.pth
116
- Name: dnl_r101-d8_512x1024_80k_cityscapes
117
  In Collection: dnlnet
118
  Metadata:
119
    backbone: R-101-D8
120
    crop size: (512,1024)
121
    lr schd: 80000
122
  Results:
123
  - Task: Semantic Segmentation
124
    Dataset: Cityscapes
125
    Metrics:
126
      mIoU: 80.41
127
  Config: configs/dnlnet/dnl_r101-d8_512x1024_80k_cityscapes.py
128
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x1024_80k_cityscapes/dnl_r101-d8_512x1024_80k_cityscapes_20200904_233629-758e2dd4.pth
129
- Name: dnl_r50-d8_769x769_80k_cityscapes
130
  In Collection: dnlnet
131
  Metadata:
132
    backbone: R-50-D8
133
    crop size: (769,769)
134
    lr schd: 80000
135
  Results:
136
  - Task: Semantic Segmentation
137
    Dataset: Cityscapes
138
    Metrics:
139
      mIoU: 79.36
140
      mIoU(ms+flip): 80.7
141
  Config: configs/dnlnet/dnl_r50-d8_769x769_80k_cityscapes.py
142
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_769x769_80k_cityscapes/dnl_r50-d8_769x769_80k_cityscapes_20200820_011925-366bc4c7.pth
143
- Name: dnl_r101-d8_769x769_80k_cityscapes
144
  In Collection: dnlnet
145
  Metadata:
146
    backbone: R-101-D8
147
    crop size: (769,769)
148
    lr schd: 80000
149
  Results:
150
  - Task: Semantic Segmentation
151
    Dataset: Cityscapes
152
    Metrics:
153
      mIoU: 79.41
154
      mIoU(ms+flip): 80.68
155
  Config: configs/dnlnet/dnl_r101-d8_769x769_80k_cityscapes.py
156
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_769x769_80k_cityscapes/dnl_r101-d8_769x769_80k_cityscapes_20200821_051111-95ff84ab.pth
157
- Name: dnl_r50-d8_512x512_80k_ade20k
158
  In Collection: dnlnet
159
  Metadata:
160
    backbone: R-50-D8
161
    crop size: (512,512)
162
    lr schd: 80000
163
    inference time (ms/im):
164
    - value: 48.4
165
      hardware: V100
166
      backend: PyTorch
167
      batch size: 1
168
      mode: FP32
169
      resolution: (512,512)
170
    Training Memory (GB): 8.8
171
  Results:
172
  - Task: Semantic Segmentation
173
    Dataset: ADE20K
174
    Metrics:
175
      mIoU: 41.76
176
      mIoU(ms+flip): 42.99
177
  Config: configs/dnlnet/dnl_r50-d8_512x512_80k_ade20k.py
178
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x512_80k_ade20k/dnl_r50-d8_512x512_80k_ade20k_20200826_183354-1cf6e0c1.pth
179
- Name: dnl_r101-d8_512x512_80k_ade20k
180
  In Collection: dnlnet
181
  Metadata:
182
    backbone: R-101-D8
183
    crop size: (512,512)
184
    lr schd: 80000
185
    inference time (ms/im):
186
    - value: 79.74
187
      hardware: V100
188
      backend: PyTorch
189
      batch size: 1
190
      mode: FP32
191
      resolution: (512,512)
192
    Training Memory (GB): 12.8
193
  Results:
194
  - Task: Semantic Segmentation
195
    Dataset: ADE20K
196
    Metrics:
197
      mIoU: 43.76
198
      mIoU(ms+flip): 44.91
199
  Config: configs/dnlnet/dnl_r101-d8_512x512_80k_ade20k.py
200
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x512_80k_ade20k/dnl_r101-d8_512x512_80k_ade20k_20200826_183354-d820d6ea.pth
201
- Name: dnl_r50-d8_512x512_160k_ade20k
202
  In Collection: dnlnet
203
  Metadata:
204
    backbone: R-50-D8
205
    crop size: (512,512)
206
    lr schd: 160000
207
  Results:
208
  - Task: Semantic Segmentation
209
    Dataset: ADE20K
210
    Metrics:
211
      mIoU: 41.87
212
      mIoU(ms+flip): 43.01
213
  Config: configs/dnlnet/dnl_r50-d8_512x512_160k_ade20k.py
214
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x512_160k_ade20k/dnl_r50-d8_512x512_160k_ade20k_20200826_183350-37837798.pth
215
- Name: dnl_r101-d8_512x512_160k_ade20k
216
  In Collection: dnlnet
217
  Metadata:
218
    backbone: R-101-D8
219
    crop size: (512,512)
220
    lr schd: 160000
221
  Results:
222
  - Task: Semantic Segmentation
223
    Dataset: ADE20K
224
    Metrics:
225
      mIoU: 44.25
226
      mIoU(ms+flip): 45.78
227
  Config: configs/dnlnet/dnl_r101-d8_512x512_160k_ade20k.py
228
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x512_160k_ade20k/dnl_r101-d8_512x512_160k_ade20k_20200826_183350-ed522c61.pth