Diff of /configs/dmnet/dmnet.yml [000000] .. [4e96d3]

Switch to side-by-side view

--- a
+++ b/configs/dmnet/dmnet.yml
@@ -0,0 +1,232 @@
+Collections:
+- Name: dmnet
+  Metadata:
+    Training Data:
+    - Cityscapes
+    - ADE20K
+  Paper:
+    URL: https://openaccess.thecvf.com/content_ICCV_2019/papers/He_Dynamic_Multi-Scale_Filters_for_Semantic_Segmentation_ICCV_2019_paper.pdf
+    Title: Dynamic Multi-scale Filters for Semantic Segmentation
+  README: configs/dmnet/README.md
+  Code:
+    URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dm_head.py#L93
+    Version: v0.17.0
+  Converted From:
+    Code: https://github.com/Junjun2016/DMNet
+Models:
+- Name: dmnet_r50-d8_512x1024_40k_cityscapes
+  In Collection: dmnet
+  Metadata:
+    backbone: R-50-D8
+    crop size: (512,1024)
+    lr schd: 40000
+    inference time (ms/im):
+    - value: 273.22
+      hardware: V100
+      backend: PyTorch
+      batch size: 1
+      mode: FP32
+      resolution: (512,1024)
+    Training Memory (GB): 7.0
+  Results:
+  - Task: Semantic Segmentation
+    Dataset: Cityscapes
+    Metrics:
+      mIoU: 77.78
+      mIoU(ms+flip): 79.14
+  Config: configs/dmnet/dmnet_r50-d8_512x1024_40k_cityscapes.py
+  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x1024_40k_cityscapes/dmnet_r50-d8_512x1024_40k_cityscapes_20201215_042326-615373cf.pth
+- Name: dmnet_r101-d8_512x1024_40k_cityscapes
+  In Collection: dmnet
+  Metadata:
+    backbone: R-101-D8
+    crop size: (512,1024)
+    lr schd: 40000
+    inference time (ms/im):
+    - value: 393.7
+      hardware: V100
+      backend: PyTorch
+      batch size: 1
+      mode: FP32
+      resolution: (512,1024)
+    Training Memory (GB): 10.6
+  Results:
+  - Task: Semantic Segmentation
+    Dataset: Cityscapes
+    Metrics:
+      mIoU: 78.37
+      mIoU(ms+flip): 79.72
+  Config: configs/dmnet/dmnet_r101-d8_512x1024_40k_cityscapes.py
+  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x1024_40k_cityscapes/dmnet_r101-d8_512x1024_40k_cityscapes_20201215_043100-8291e976.pth
+- Name: dmnet_r50-d8_769x769_40k_cityscapes
+  In Collection: dmnet
+  Metadata:
+    backbone: R-50-D8
+    crop size: (769,769)
+    lr schd: 40000
+    inference time (ms/im):
+    - value: 636.94
+      hardware: V100
+      backend: PyTorch
+      batch size: 1
+      mode: FP32
+      resolution: (769,769)
+    Training Memory (GB): 7.9
+  Results:
+  - Task: Semantic Segmentation
+    Dataset: Cityscapes
+    Metrics:
+      mIoU: 78.49
+      mIoU(ms+flip): 80.27
+  Config: configs/dmnet/dmnet_r50-d8_769x769_40k_cityscapes.py
+  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_769x769_40k_cityscapes/dmnet_r50-d8_769x769_40k_cityscapes_20201215_093706-e7f0e23e.pth
+- Name: dmnet_r101-d8_769x769_40k_cityscapes
+  In Collection: dmnet
+  Metadata:
+    backbone: R-101-D8
+    crop size: (769,769)
+    lr schd: 40000
+    inference time (ms/im):
+    - value: 990.1
+      hardware: V100
+      backend: PyTorch
+      batch size: 1
+      mode: FP32
+      resolution: (769,769)
+    Training Memory (GB): 12.0
+  Results:
+  - Task: Semantic Segmentation
+    Dataset: Cityscapes
+    Metrics:
+      mIoU: 77.62
+      mIoU(ms+flip): 78.94
+  Config: configs/dmnet/dmnet_r101-d8_769x769_40k_cityscapes.py
+  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_769x769_40k_cityscapes/dmnet_r101-d8_769x769_40k_cityscapes_20201215_081348-a74261f6.pth
+- Name: dmnet_r50-d8_512x1024_80k_cityscapes
+  In Collection: dmnet
+  Metadata:
+    backbone: R-50-D8
+    crop size: (512,1024)
+    lr schd: 80000
+  Results:
+  - Task: Semantic Segmentation
+    Dataset: Cityscapes
+    Metrics:
+      mIoU: 79.07
+      mIoU(ms+flip): 80.22
+  Config: configs/dmnet/dmnet_r50-d8_512x1024_80k_cityscapes.py
+  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x1024_80k_cityscapes/dmnet_r50-d8_512x1024_80k_cityscapes_20201215_053728-3c8893b9.pth
+- Name: dmnet_r101-d8_512x1024_80k_cityscapes
+  In Collection: dmnet
+  Metadata:
+    backbone: R-101-D8
+    crop size: (512,1024)
+    lr schd: 80000
+  Results:
+  - Task: Semantic Segmentation
+    Dataset: Cityscapes
+    Metrics:
+      mIoU: 79.64
+      mIoU(ms+flip): 80.67
+  Config: configs/dmnet/dmnet_r101-d8_512x1024_80k_cityscapes.py
+  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x1024_80k_cityscapes/dmnet_r101-d8_512x1024_80k_cityscapes_20201215_031718-fa081cb8.pth
+- Name: dmnet_r50-d8_769x769_80k_cityscapes
+  In Collection: dmnet
+  Metadata:
+    backbone: R-50-D8
+    crop size: (769,769)
+    lr schd: 80000
+  Results:
+  - Task: Semantic Segmentation
+    Dataset: Cityscapes
+    Metrics:
+      mIoU: 79.22
+      mIoU(ms+flip): 80.55
+  Config: configs/dmnet/dmnet_r50-d8_769x769_80k_cityscapes.py
+  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_769x769_80k_cityscapes/dmnet_r50-d8_769x769_80k_cityscapes_20201215_034006-6060840e.pth
+- Name: dmnet_r101-d8_769x769_80k_cityscapes
+  In Collection: dmnet
+  Metadata:
+    backbone: R-101-D8
+    crop size: (769,769)
+    lr schd: 80000
+  Results:
+  - Task: Semantic Segmentation
+    Dataset: Cityscapes
+    Metrics:
+      mIoU: 79.19
+      mIoU(ms+flip): 80.65
+  Config: configs/dmnet/dmnet_r101-d8_769x769_80k_cityscapes.py
+  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_769x769_80k_cityscapes/dmnet_r101-d8_769x769_80k_cityscapes_20201215_082810-7f0de59a.pth
+- Name: dmnet_r50-d8_512x512_80k_ade20k
+  In Collection: dmnet
+  Metadata:
+    backbone: R-50-D8
+    crop size: (512,512)
+    lr schd: 80000
+    inference time (ms/im):
+    - value: 47.73
+      hardware: V100
+      backend: PyTorch
+      batch size: 1
+      mode: FP32
+      resolution: (512,512)
+    Training Memory (GB): 9.4
+  Results:
+  - Task: Semantic Segmentation
+    Dataset: ADE20K
+    Metrics:
+      mIoU: 42.37
+      mIoU(ms+flip): 43.62
+  Config: configs/dmnet/dmnet_r50-d8_512x512_80k_ade20k.py
+  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x512_80k_ade20k/dmnet_r50-d8_512x512_80k_ade20k_20201215_144744-f89092a6.pth
+- Name: dmnet_r101-d8_512x512_80k_ade20k
+  In Collection: dmnet
+  Metadata:
+    backbone: R-101-D8
+    crop size: (512,512)
+    lr schd: 80000
+    inference time (ms/im):
+    - value: 72.05
+      hardware: V100
+      backend: PyTorch
+      batch size: 1
+      mode: FP32
+      resolution: (512,512)
+    Training Memory (GB): 13.0
+  Results:
+  - Task: Semantic Segmentation
+    Dataset: ADE20K
+    Metrics:
+      mIoU: 45.34
+      mIoU(ms+flip): 46.13
+  Config: configs/dmnet/dmnet_r101-d8_512x512_80k_ade20k.py
+  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x512_80k_ade20k/dmnet_r101-d8_512x512_80k_ade20k_20201215_104812-bfa45311.pth
+- Name: dmnet_r50-d8_512x512_160k_ade20k
+  In Collection: dmnet
+  Metadata:
+    backbone: R-50-D8
+    crop size: (512,512)
+    lr schd: 160000
+  Results:
+  - Task: Semantic Segmentation
+    Dataset: ADE20K
+    Metrics:
+      mIoU: 43.15
+      mIoU(ms+flip): 44.17
+  Config: configs/dmnet/dmnet_r50-d8_512x512_160k_ade20k.py
+  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x512_160k_ade20k/dmnet_r50-d8_512x512_160k_ade20k_20201215_115313-025ab3f9.pth
+- Name: dmnet_r101-d8_512x512_160k_ade20k
+  In Collection: dmnet
+  Metadata:
+    backbone: R-101-D8
+    crop size: (512,512)
+    lr schd: 160000
+  Results:
+  - Task: Semantic Segmentation
+    Dataset: ADE20K
+    Metrics:
+      mIoU: 45.42
+      mIoU(ms+flip): 46.76
+  Config: configs/dmnet/dmnet_r101-d8_512x512_160k_ade20k.py
+  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x512_160k_ade20k/dmnet_r101-d8_512x512_160k_ade20k_20201215_111145-a0bc02ef.pth