Switch to unified view

a b/configs/deeplabv3plus/deeplabv3plus.yml
1
Collections:
2
- Name: deeplabv3plus
3
  Metadata:
4
    Training Data:
5
    - Cityscapes
6
    - ADE20K
7
    - Pascal VOC 2012 + Aug
8
    - Pascal Context
9
    - Pascal Context 59
10
    - LoveDA
11
  Paper:
12
    URL: https://arxiv.org/abs/1802.02611
13
    Title: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation
14
  README: configs/deeplabv3plus/README.md
15
  Code:
16
    URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/sep_aspp_head.py#L30
17
    Version: v0.17.0
18
  Converted From:
19
    Code: https://github.com/tensorflow/models/tree/master/research/deeplab
20
Models:
21
- Name: deeplabv3plus_r50-d8_512x1024_40k_cityscapes
22
  In Collection: deeplabv3plus
23
  Metadata:
24
    backbone: R-50-D8
25
    crop size: (512,1024)
26
    lr schd: 40000
27
    inference time (ms/im):
28
    - value: 253.81
29
      hardware: V100
30
      backend: PyTorch
31
      batch size: 1
32
      mode: FP32
33
      resolution: (512,1024)
34
    Training Memory (GB): 7.5
35
  Results:
36
  - Task: Semantic Segmentation
37
    Dataset: Cityscapes
38
    Metrics:
39
      mIoU: 79.61
40
      mIoU(ms+flip): 81.01
41
  Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_40k_cityscapes.py
42
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_40k_cityscapes/deeplabv3plus_r50-d8_512x1024_40k_cityscapes_20200605_094610-d222ffcd.pth
43
- Name: deeplabv3plus_r101-d8_512x1024_40k_cityscapes
44
  In Collection: deeplabv3plus
45
  Metadata:
46
    backbone: R-101-D8
47
    crop size: (512,1024)
48
    lr schd: 40000
49
    inference time (ms/im):
50
    - value: 384.62
51
      hardware: V100
52
      backend: PyTorch
53
      batch size: 1
54
      mode: FP32
55
      resolution: (512,1024)
56
    Training Memory (GB): 11.0
57
  Results:
58
  - Task: Semantic Segmentation
59
    Dataset: Cityscapes
60
    Metrics:
61
      mIoU: 80.21
62
      mIoU(ms+flip): 81.82
63
  Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_40k_cityscapes.py
64
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_40k_cityscapes/deeplabv3plus_r101-d8_512x1024_40k_cityscapes_20200605_094614-3769eecf.pth
65
- Name: deeplabv3plus_r50-d8_769x769_40k_cityscapes
66
  In Collection: deeplabv3plus
67
  Metadata:
68
    backbone: R-50-D8
69
    crop size: (769,769)
70
    lr schd: 40000
71
    inference time (ms/im):
72
    - value: 581.4
73
      hardware: V100
74
      backend: PyTorch
75
      batch size: 1
76
      mode: FP32
77
      resolution: (769,769)
78
    Training Memory (GB): 8.5
79
  Results:
80
  - Task: Semantic Segmentation
81
    Dataset: Cityscapes
82
    Metrics:
83
      mIoU: 78.97
84
      mIoU(ms+flip): 80.46
85
  Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_769x769_40k_cityscapes.py
86
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_769x769_40k_cityscapes/deeplabv3plus_r50-d8_769x769_40k_cityscapes_20200606_114143-1dcb0e3c.pth
87
- Name: deeplabv3plus_r101-d8_769x769_40k_cityscapes
88
  In Collection: deeplabv3plus
89
  Metadata:
90
    backbone: R-101-D8
91
    crop size: (769,769)
92
    lr schd: 40000
93
    inference time (ms/im):
94
    - value: 869.57
95
      hardware: V100
96
      backend: PyTorch
97
      batch size: 1
98
      mode: FP32
99
      resolution: (769,769)
100
    Training Memory (GB): 12.5
101
  Results:
102
  - Task: Semantic Segmentation
103
    Dataset: Cityscapes
104
    Metrics:
105
      mIoU: 79.46
106
      mIoU(ms+flip): 80.5
107
  Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_769x769_40k_cityscapes.py
108
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_769x769_40k_cityscapes/deeplabv3plus_r101-d8_769x769_40k_cityscapes_20200606_114304-ff414b9e.pth
109
- Name: deeplabv3plus_r18-d8_512x1024_80k_cityscapes
110
  In Collection: deeplabv3plus
111
  Metadata:
112
    backbone: R-18-D8
113
    crop size: (512,1024)
114
    lr schd: 80000
115
    inference time (ms/im):
116
    - value: 70.08
117
      hardware: V100
118
      backend: PyTorch
119
      batch size: 1
120
      mode: FP32
121
      resolution: (512,1024)
122
    Training Memory (GB): 2.2
123
  Results:
124
  - Task: Semantic Segmentation
125
    Dataset: Cityscapes
126
    Metrics:
127
      mIoU: 76.89
128
      mIoU(ms+flip): 78.76
129
  Config: configs/deeplabv3plus/deeplabv3plus_r18-d8_512x1024_80k_cityscapes.py
130
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_512x1024_80k_cityscapes/deeplabv3plus_r18-d8_512x1024_80k_cityscapes_20201226_080942-cff257fe.pth
131
- Name: deeplabv3plus_r50-d8_512x1024_80k_cityscapes
132
  In Collection: deeplabv3plus
133
  Metadata:
134
    backbone: R-50-D8
135
    crop size: (512,1024)
136
    lr schd: 80000
137
  Results:
138
  - Task: Semantic Segmentation
139
    Dataset: Cityscapes
140
    Metrics:
141
      mIoU: 80.09
142
      mIoU(ms+flip): 81.13
143
  Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_80k_cityscapes.py
144
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_80k_cityscapes/deeplabv3plus_r50-d8_512x1024_80k_cityscapes_20200606_114049-f9fb496d.pth
145
- Name: deeplabv3plus_r101-d8_512x1024_80k_cityscapes
146
  In Collection: deeplabv3plus
147
  Metadata:
148
    backbone: R-101-D8
149
    crop size: (512,1024)
150
    lr schd: 80000
151
  Results:
152
  - Task: Semantic Segmentation
153
    Dataset: Cityscapes
154
    Metrics:
155
      mIoU: 80.97
156
      mIoU(ms+flip): 82.03
157
  Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_80k_cityscapes.py
158
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_80k_cityscapes/deeplabv3plus_r101-d8_512x1024_80k_cityscapes_20200606_114143-068fcfe9.pth
159
- Name: deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes
160
  In Collection: deeplabv3plus
161
  Metadata:
162
    backbone: R-101-D8
163
    crop size: (512,1024)
164
    lr schd: 80000
165
    inference time (ms/im):
166
    - value: 127.06
167
      hardware: V100
168
      backend: PyTorch
169
      batch size: 1
170
      mode: FP16
171
      resolution: (512,1024)
172
    Training Memory (GB): 6.35
173
  Results:
174
  - Task: Semantic Segmentation
175
    Dataset: Cityscapes
176
    Metrics:
177
      mIoU: 80.46
178
  Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes.py
179
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes/deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230920-f1104f4b.pth
180
- Name: deeplabv3plus_r18-d8_769x769_80k_cityscapes
181
  In Collection: deeplabv3plus
182
  Metadata:
183
    backbone: R-18-D8
184
    crop size: (769,769)
185
    lr schd: 80000
186
    inference time (ms/im):
187
    - value: 174.22
188
      hardware: V100
189
      backend: PyTorch
190
      batch size: 1
191
      mode: FP32
192
      resolution: (769,769)
193
    Training Memory (GB): 2.5
194
  Results:
195
  - Task: Semantic Segmentation
196
    Dataset: Cityscapes
197
    Metrics:
198
      mIoU: 76.26
199
      mIoU(ms+flip): 77.91
200
  Config: configs/deeplabv3plus/deeplabv3plus_r18-d8_769x769_80k_cityscapes.py
201
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_769x769_80k_cityscapes/deeplabv3plus_r18-d8_769x769_80k_cityscapes_20201226_083346-f326e06a.pth
202
- Name: deeplabv3plus_r50-d8_769x769_80k_cityscapes
203
  In Collection: deeplabv3plus
204
  Metadata:
205
    backbone: R-50-D8
206
    crop size: (769,769)
207
    lr schd: 80000
208
  Results:
209
  - Task: Semantic Segmentation
210
    Dataset: Cityscapes
211
    Metrics:
212
      mIoU: 79.83
213
      mIoU(ms+flip): 81.48
214
  Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_769x769_80k_cityscapes.py
215
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_769x769_80k_cityscapes/deeplabv3plus_r50-d8_769x769_80k_cityscapes_20200606_210233-0e9dfdc4.pth
216
- Name: deeplabv3plus_r101-d8_769x769_80k_cityscapes
217
  In Collection: deeplabv3plus
218
  Metadata:
219
    backbone: R-101-D8
220
    crop size: (769,769)
221
    lr schd: 80000
222
  Results:
223
  - Task: Semantic Segmentation
224
    Dataset: Cityscapes
225
    Metrics:
226
      mIoU: 80.98
227
      mIoU(ms+flip): 82.18
228
  Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_769x769_80k_cityscapes.py
229
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_769x769_80k_cityscapes/deeplabv3plus_r101-d8_769x769_80k_cityscapes_20200607_000405-a7573d20.pth
230
- Name: deeplabv3plus_r101-d16-mg124_512x1024_40k_cityscapes
231
  In Collection: deeplabv3plus
232
  Metadata:
233
    backbone: R-101-D16-MG124
234
    crop size: (512,1024)
235
    lr schd: 40000
236
    inference time (ms/im):
237
    - value: 133.69
238
      hardware: V100
239
      backend: PyTorch
240
      batch size: 1
241
      mode: FP32
242
      resolution: (512,1024)
243
    Training Memory (GB): 5.8
244
  Results:
245
  - Task: Semantic Segmentation
246
    Dataset: Cityscapes
247
    Metrics:
248
      mIoU: 79.09
249
      mIoU(ms+flip): 80.36
250
  Config: configs/deeplabv3plus/deeplabv3plus_r101-d16-mg124_512x1024_40k_cityscapes.py
251
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d16-mg124_512x1024_40k_cityscapes/deeplabv3plus_r101-d16-mg124_512x1024_40k_cityscapes_20200908_005644-cf9ce186.pth
252
- Name: deeplabv3plus_r101-d16-mg124_512x1024_80k_cityscapes
253
  In Collection: deeplabv3plus
254
  Metadata:
255
    backbone: R-101-D16-MG124
256
    crop size: (512,1024)
257
    lr schd: 80000
258
    Training Memory (GB): 9.9
259
  Results:
260
  - Task: Semantic Segmentation
261
    Dataset: Cityscapes
262
    Metrics:
263
      mIoU: 79.9
264
      mIoU(ms+flip): 81.33
265
  Config: configs/deeplabv3plus/deeplabv3plus_r101-d16-mg124_512x1024_80k_cityscapes.py
266
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d16-mg124_512x1024_80k_cityscapes/deeplabv3plus_r101-d16-mg124_512x1024_80k_cityscapes_20200908_005644-ee6158e0.pth
267
- Name: deeplabv3plus_r18b-d8_512x1024_80k_cityscapes
268
  In Collection: deeplabv3plus
269
  Metadata:
270
    backbone: R-18b-D8
271
    crop size: (512,1024)
272
    lr schd: 80000
273
    inference time (ms/im):
274
    - value: 66.89
275
      hardware: V100
276
      backend: PyTorch
277
      batch size: 1
278
      mode: FP32
279
      resolution: (512,1024)
280
    Training Memory (GB): 2.1
281
  Results:
282
  - Task: Semantic Segmentation
283
    Dataset: Cityscapes
284
    Metrics:
285
      mIoU: 75.87
286
      mIoU(ms+flip): 77.52
287
  Config: configs/deeplabv3plus/deeplabv3plus_r18b-d8_512x1024_80k_cityscapes.py
288
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18b-d8_512x1024_80k_cityscapes/deeplabv3plus_r18b-d8_512x1024_80k_cityscapes_20201226_090828-e451abd9.pth
289
- Name: deeplabv3plus_r50b-d8_512x1024_80k_cityscapes
290
  In Collection: deeplabv3plus
291
  Metadata:
292
    backbone: R-50b-D8
293
    crop size: (512,1024)
294
    lr schd: 80000
295
    inference time (ms/im):
296
    - value: 253.81
297
      hardware: V100
298
      backend: PyTorch
299
      batch size: 1
300
      mode: FP32
301
      resolution: (512,1024)
302
    Training Memory (GB): 7.4
303
  Results:
304
  - Task: Semantic Segmentation
305
    Dataset: Cityscapes
306
    Metrics:
307
      mIoU: 80.28
308
      mIoU(ms+flip): 81.44
309
  Config: configs/deeplabv3plus/deeplabv3plus_r50b-d8_512x1024_80k_cityscapes.py
310
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50b-d8_512x1024_80k_cityscapes/deeplabv3plus_r50b-d8_512x1024_80k_cityscapes_20201225_213645-a97e4e43.pth
311
- Name: deeplabv3plus_r101b-d8_512x1024_80k_cityscapes
312
  In Collection: deeplabv3plus
313
  Metadata:
314
    backbone: R-101b-D8
315
    crop size: (512,1024)
316
    lr schd: 80000
317
    inference time (ms/im):
318
    - value: 384.62
319
      hardware: V100
320
      backend: PyTorch
321
      batch size: 1
322
      mode: FP32
323
      resolution: (512,1024)
324
    Training Memory (GB): 10.9
325
  Results:
326
  - Task: Semantic Segmentation
327
    Dataset: Cityscapes
328
    Metrics:
329
      mIoU: 80.16
330
      mIoU(ms+flip): 81.41
331
  Config: configs/deeplabv3plus/deeplabv3plus_r101b-d8_512x1024_80k_cityscapes.py
332
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101b-d8_512x1024_80k_cityscapes/deeplabv3plus_r101b-d8_512x1024_80k_cityscapes_20201226_190843-9c3c93a4.pth
333
- Name: deeplabv3plus_r18b-d8_769x769_80k_cityscapes
334
  In Collection: deeplabv3plus
335
  Metadata:
336
    backbone: R-18b-D8
337
    crop size: (769,769)
338
    lr schd: 80000
339
    inference time (ms/im):
340
    - value: 167.79
341
      hardware: V100
342
      backend: PyTorch
343
      batch size: 1
344
      mode: FP32
345
      resolution: (769,769)
346
    Training Memory (GB): 2.4
347
  Results:
348
  - Task: Semantic Segmentation
349
    Dataset: Cityscapes
350
    Metrics:
351
      mIoU: 76.36
352
      mIoU(ms+flip): 78.24
353
  Config: configs/deeplabv3plus/deeplabv3plus_r18b-d8_769x769_80k_cityscapes.py
354
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18b-d8_769x769_80k_cityscapes/deeplabv3plus_r18b-d8_769x769_80k_cityscapes_20201226_151312-2c868aff.pth
355
- Name: deeplabv3plus_r50b-d8_769x769_80k_cityscapes
356
  In Collection: deeplabv3plus
357
  Metadata:
358
    backbone: R-50b-D8
359
    crop size: (769,769)
360
    lr schd: 80000
361
    inference time (ms/im):
362
    - value: 581.4
363
      hardware: V100
364
      backend: PyTorch
365
      batch size: 1
366
      mode: FP32
367
      resolution: (769,769)
368
    Training Memory (GB): 8.4
369
  Results:
370
  - Task: Semantic Segmentation
371
    Dataset: Cityscapes
372
    Metrics:
373
      mIoU: 79.41
374
      mIoU(ms+flip): 80.56
375
  Config: configs/deeplabv3plus/deeplabv3plus_r50b-d8_769x769_80k_cityscapes.py
376
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50b-d8_769x769_80k_cityscapes/deeplabv3plus_r50b-d8_769x769_80k_cityscapes_20201225_224655-8b596d1c.pth
377
- Name: deeplabv3plus_r101b-d8_769x769_80k_cityscapes
378
  In Collection: deeplabv3plus
379
  Metadata:
380
    backbone: R-101b-D8
381
    crop size: (769,769)
382
    lr schd: 80000
383
    inference time (ms/im):
384
    - value: 909.09
385
      hardware: V100
386
      backend: PyTorch
387
      batch size: 1
388
      mode: FP32
389
      resolution: (769,769)
390
    Training Memory (GB): 12.3
391
  Results:
392
  - Task: Semantic Segmentation
393
    Dataset: Cityscapes
394
    Metrics:
395
      mIoU: 79.88
396
      mIoU(ms+flip): 81.46
397
  Config: configs/deeplabv3plus/deeplabv3plus_r101b-d8_769x769_80k_cityscapes.py
398
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101b-d8_769x769_80k_cityscapes/deeplabv3plus_r101b-d8_769x769_80k_cityscapes_20201226_205041-227cdf7c.pth
399
- Name: deeplabv3plus_r50-d8_512x512_80k_ade20k
400
  In Collection: deeplabv3plus
401
  Metadata:
402
    backbone: R-50-D8
403
    crop size: (512,512)
404
    lr schd: 80000
405
    inference time (ms/im):
406
    - value: 47.6
407
      hardware: V100
408
      backend: PyTorch
409
      batch size: 1
410
      mode: FP32
411
      resolution: (512,512)
412
    Training Memory (GB): 10.6
413
  Results:
414
  - Task: Semantic Segmentation
415
    Dataset: ADE20K
416
    Metrics:
417
      mIoU: 42.72
418
      mIoU(ms+flip): 43.75
419
  Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_ade20k.py
420
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_ade20k/deeplabv3plus_r50-d8_512x512_80k_ade20k_20200614_185028-bf1400d8.pth
421
- Name: deeplabv3plus_r101-d8_512x512_80k_ade20k
422
  In Collection: deeplabv3plus
423
  Metadata:
424
    backbone: R-101-D8
425
    crop size: (512,512)
426
    lr schd: 80000
427
    inference time (ms/im):
428
    - value: 70.62
429
      hardware: V100
430
      backend: PyTorch
431
      batch size: 1
432
      mode: FP32
433
      resolution: (512,512)
434
    Training Memory (GB): 14.1
435
  Results:
436
  - Task: Semantic Segmentation
437
    Dataset: ADE20K
438
    Metrics:
439
      mIoU: 44.6
440
      mIoU(ms+flip): 46.06
441
  Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_ade20k.py
442
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_ade20k/deeplabv3plus_r101-d8_512x512_80k_ade20k_20200615_014139-d5730af7.pth
443
- Name: deeplabv3plus_r50-d8_512x512_160k_ade20k
444
  In Collection: deeplabv3plus
445
  Metadata:
446
    backbone: R-50-D8
447
    crop size: (512,512)
448
    lr schd: 160000
449
  Results:
450
  - Task: Semantic Segmentation
451
    Dataset: ADE20K
452
    Metrics:
453
      mIoU: 43.95
454
      mIoU(ms+flip): 44.93
455
  Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_512x512_160k_ade20k.py
456
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_160k_ade20k/deeplabv3plus_r50-d8_512x512_160k_ade20k_20200615_124504-6135c7e0.pth
457
- Name: deeplabv3plus_r101-d8_512x512_160k_ade20k
458
  In Collection: deeplabv3plus
459
  Metadata:
460
    backbone: R-101-D8
461
    crop size: (512,512)
462
    lr schd: 160000
463
  Results:
464
  - Task: Semantic Segmentation
465
    Dataset: ADE20K
466
    Metrics:
467
      mIoU: 45.47
468
      mIoU(ms+flip): 46.35
469
  Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_512x512_160k_ade20k.py
470
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_160k_ade20k/deeplabv3plus_r101-d8_512x512_160k_ade20k_20200615_123232-38ed86bb.pth
471
- Name: deeplabv3plus_r50-d8_512x512_20k_voc12aug
472
  In Collection: deeplabv3plus
473
  Metadata:
474
    backbone: R-50-D8
475
    crop size: (512,512)
476
    lr schd: 20000
477
    inference time (ms/im):
478
    - value: 47.62
479
      hardware: V100
480
      backend: PyTorch
481
      batch size: 1
482
      mode: FP32
483
      resolution: (512,512)
484
    Training Memory (GB): 7.6
485
  Results:
486
  - Task: Semantic Segmentation
487
    Dataset: Pascal VOC 2012 + Aug
488
    Metrics:
489
      mIoU: 75.93
490
      mIoU(ms+flip): 77.5
491
  Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_512x512_20k_voc12aug.py
492
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_20k_voc12aug/deeplabv3plus_r50-d8_512x512_20k_voc12aug_20200617_102323-aad58ef1.pth
493
- Name: deeplabv3plus_r101-d8_512x512_20k_voc12aug
494
  In Collection: deeplabv3plus
495
  Metadata:
496
    backbone: R-101-D8
497
    crop size: (512,512)
498
    lr schd: 20000
499
    inference time (ms/im):
500
    - value: 72.05
501
      hardware: V100
502
      backend: PyTorch
503
      batch size: 1
504
      mode: FP32
505
      resolution: (512,512)
506
    Training Memory (GB): 11.0
507
  Results:
508
  - Task: Semantic Segmentation
509
    Dataset: Pascal VOC 2012 + Aug
510
    Metrics:
511
      mIoU: 77.22
512
      mIoU(ms+flip): 78.59
513
  Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_512x512_20k_voc12aug.py
514
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_20k_voc12aug/deeplabv3plus_r101-d8_512x512_20k_voc12aug_20200617_102345-c7ff3d56.pth
515
- Name: deeplabv3plus_r50-d8_512x512_40k_voc12aug
516
  In Collection: deeplabv3plus
517
  Metadata:
518
    backbone: R-50-D8
519
    crop size: (512,512)
520
    lr schd: 40000
521
  Results:
522
  - Task: Semantic Segmentation
523
    Dataset: Pascal VOC 2012 + Aug
524
    Metrics:
525
      mIoU: 76.81
526
      mIoU(ms+flip): 77.57
527
  Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_512x512_40k_voc12aug.py
528
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_40k_voc12aug/deeplabv3plus_r50-d8_512x512_40k_voc12aug_20200613_161759-e1b43aa9.pth
529
- Name: deeplabv3plus_r101-d8_512x512_40k_voc12aug
530
  In Collection: deeplabv3plus
531
  Metadata:
532
    backbone: R-101-D8
533
    crop size: (512,512)
534
    lr schd: 40000
535
  Results:
536
  - Task: Semantic Segmentation
537
    Dataset: Pascal VOC 2012 + Aug
538
    Metrics:
539
      mIoU: 78.62
540
      mIoU(ms+flip): 79.53
541
  Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_512x512_40k_voc12aug.py
542
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_40k_voc12aug/deeplabv3plus_r101-d8_512x512_40k_voc12aug_20200613_205333-faf03387.pth
543
- Name: deeplabv3plus_r101-d8_480x480_40k_pascal_context
544
  In Collection: deeplabv3plus
545
  Metadata:
546
    backbone: R-101-D8
547
    crop size: (480,480)
548
    lr schd: 40000
549
    inference time (ms/im):
550
    - value: 110.01
551
      hardware: V100
552
      backend: PyTorch
553
      batch size: 1
554
      mode: FP32
555
      resolution: (480,480)
556
  Results:
557
  - Task: Semantic Segmentation
558
    Dataset: Pascal Context
559
    Metrics:
560
      mIoU: 47.3
561
      mIoU(ms+flip): 48.47
562
  Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_480x480_40k_pascal_context.py
563
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_40k_pascal_context/deeplabv3plus_r101-d8_480x480_40k_pascal_context_20200911_165459-d3c8a29e.pth
564
- Name: deeplabv3plus_r101-d8_480x480_80k_pascal_context
565
  In Collection: deeplabv3plus
566
  Metadata:
567
    backbone: R-101-D8
568
    crop size: (480,480)
569
    lr schd: 80000
570
  Results:
571
  - Task: Semantic Segmentation
572
    Dataset: Pascal Context
573
    Metrics:
574
      mIoU: 47.23
575
      mIoU(ms+flip): 48.26
576
  Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context.py
577
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context/deeplabv3plus_r101-d8_480x480_80k_pascal_context_20200911_155322-145d3ee8.pth
578
- Name: deeplabv3plus_r101-d8_480x480_40k_pascal_context_59
579
  In Collection: deeplabv3plus
580
  Metadata:
581
    backbone: R-101-D8
582
    crop size: (480,480)
583
    lr schd: 40000
584
  Results:
585
  - Task: Semantic Segmentation
586
    Dataset: Pascal Context 59
587
    Metrics:
588
      mIoU: 52.86
589
      mIoU(ms+flip): 54.54
590
  Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_480x480_40k_pascal_context_59.py
591
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_40k_pascal_context_59/deeplabv3plus_r101-d8_480x480_40k_pascal_context_59_20210416_111233-ed937f15.pth
592
- Name: deeplabv3plus_r101-d8_480x480_80k_pascal_context_59
593
  In Collection: deeplabv3plus
594
  Metadata:
595
    backbone: R-101-D8
596
    crop size: (480,480)
597
    lr schd: 80000
598
  Results:
599
  - Task: Semantic Segmentation
600
    Dataset: Pascal Context 59
601
    Metrics:
602
      mIoU: 53.2
603
      mIoU(ms+flip): 54.67
604
  Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context_59.py
605
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context_59/deeplabv3plus_r101-d8_480x480_80k_pascal_context_59_20210416_111127-7ca0331d.pth
606
- Name: deeplabv3plus_r18-d8_512x512_80k_loveda
607
  In Collection: deeplabv3plus
608
  Metadata:
609
    backbone: R-18-D8
610
    crop size: (512,512)
611
    lr schd: 80000
612
    inference time (ms/im):
613
    - value: 39.11
614
      hardware: V100
615
      backend: PyTorch
616
      batch size: 1
617
      mode: FP32
618
      resolution: (512,512)
619
    Training Memory (GB): 1.93
620
  Results:
621
  - Task: Semantic Segmentation
622
    Dataset: LoveDA
623
    Metrics:
624
      mIoU: 50.28
625
      mIoU(ms+flip): 50.47
626
  Config: configs/deeplabv3plus/deeplabv3plus_r18-d8_512x512_80k_loveda.py
627
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_512x512_80k_loveda/deeplabv3plus_r18-d8_512x512_80k_loveda_20211104_132800-ce0fa0ca.pth
628
- Name: deeplabv3plus_r50-d8_512x512_80k_loveda
629
  In Collection: deeplabv3plus
630
  Metadata:
631
    backbone: R-50-D8
632
    crop size: (512,512)
633
    lr schd: 80000
634
    inference time (ms/im):
635
    - value: 166.67
636
      hardware: V100
637
      backend: PyTorch
638
      batch size: 1
639
      mode: FP32
640
      resolution: (512,512)
641
    Training Memory (GB): 7.37
642
  Results:
643
  - Task: Semantic Segmentation
644
    Dataset: LoveDA
645
    Metrics:
646
      mIoU: 50.99
647
      mIoU(ms+flip): 50.65
648
  Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_loveda.py
649
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_loveda/deeplabv3plus_r50-d8_512x512_80k_loveda_20211105_080442-f0720392.pth
650
- Name: deeplabv3plus_r101-d8_512x512_80k_loveda
651
  In Collection: deeplabv3plus
652
  Metadata:
653
    backbone: R-101-D8
654
    crop size: (512,512)
655
    lr schd: 80000
656
    inference time (ms/im):
657
    - value: 230.95
658
      hardware: V100
659
      backend: PyTorch
660
      batch size: 1
661
      mode: FP32
662
      resolution: (512,512)
663
    Training Memory (GB): 10.84
664
  Results:
665
  - Task: Semantic Segmentation
666
    Dataset: LoveDA
667
    Metrics:
668
      mIoU: 51.47
669
      mIoU(ms+flip): 51.32
670
  Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_loveda.py
671
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_loveda/deeplabv3plus_r101-d8_512x512_80k_loveda_20211105_110759-4c1f297e.pth