|
a |
|
b/configs/deeplabv3plus/deeplabv3plus.yml |
|
|
1 |
Collections: |
|
|
2 |
- Name: deeplabv3plus |
|
|
3 |
Metadata: |
|
|
4 |
Training Data: |
|
|
5 |
- Cityscapes |
|
|
6 |
- ADE20K |
|
|
7 |
- Pascal VOC 2012 + Aug |
|
|
8 |
- Pascal Context |
|
|
9 |
- Pascal Context 59 |
|
|
10 |
- LoveDA |
|
|
11 |
Paper: |
|
|
12 |
URL: https://arxiv.org/abs/1802.02611 |
|
|
13 |
Title: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation |
|
|
14 |
README: configs/deeplabv3plus/README.md |
|
|
15 |
Code: |
|
|
16 |
URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/sep_aspp_head.py#L30 |
|
|
17 |
Version: v0.17.0 |
|
|
18 |
Converted From: |
|
|
19 |
Code: https://github.com/tensorflow/models/tree/master/research/deeplab |
|
|
20 |
Models: |
|
|
21 |
- Name: deeplabv3plus_r50-d8_512x1024_40k_cityscapes |
|
|
22 |
In Collection: deeplabv3plus |
|
|
23 |
Metadata: |
|
|
24 |
backbone: R-50-D8 |
|
|
25 |
crop size: (512,1024) |
|
|
26 |
lr schd: 40000 |
|
|
27 |
inference time (ms/im): |
|
|
28 |
- value: 253.81 |
|
|
29 |
hardware: V100 |
|
|
30 |
backend: PyTorch |
|
|
31 |
batch size: 1 |
|
|
32 |
mode: FP32 |
|
|
33 |
resolution: (512,1024) |
|
|
34 |
Training Memory (GB): 7.5 |
|
|
35 |
Results: |
|
|
36 |
- Task: Semantic Segmentation |
|
|
37 |
Dataset: Cityscapes |
|
|
38 |
Metrics: |
|
|
39 |
mIoU: 79.61 |
|
|
40 |
mIoU(ms+flip): 81.01 |
|
|
41 |
Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_40k_cityscapes.py |
|
|
42 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_40k_cityscapes/deeplabv3plus_r50-d8_512x1024_40k_cityscapes_20200605_094610-d222ffcd.pth |
|
|
43 |
- Name: deeplabv3plus_r101-d8_512x1024_40k_cityscapes |
|
|
44 |
In Collection: deeplabv3plus |
|
|
45 |
Metadata: |
|
|
46 |
backbone: R-101-D8 |
|
|
47 |
crop size: (512,1024) |
|
|
48 |
lr schd: 40000 |
|
|
49 |
inference time (ms/im): |
|
|
50 |
- value: 384.62 |
|
|
51 |
hardware: V100 |
|
|
52 |
backend: PyTorch |
|
|
53 |
batch size: 1 |
|
|
54 |
mode: FP32 |
|
|
55 |
resolution: (512,1024) |
|
|
56 |
Training Memory (GB): 11.0 |
|
|
57 |
Results: |
|
|
58 |
- Task: Semantic Segmentation |
|
|
59 |
Dataset: Cityscapes |
|
|
60 |
Metrics: |
|
|
61 |
mIoU: 80.21 |
|
|
62 |
mIoU(ms+flip): 81.82 |
|
|
63 |
Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_40k_cityscapes.py |
|
|
64 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_40k_cityscapes/deeplabv3plus_r101-d8_512x1024_40k_cityscapes_20200605_094614-3769eecf.pth |
|
|
65 |
- Name: deeplabv3plus_r50-d8_769x769_40k_cityscapes |
|
|
66 |
In Collection: deeplabv3plus |
|
|
67 |
Metadata: |
|
|
68 |
backbone: R-50-D8 |
|
|
69 |
crop size: (769,769) |
|
|
70 |
lr schd: 40000 |
|
|
71 |
inference time (ms/im): |
|
|
72 |
- value: 581.4 |
|
|
73 |
hardware: V100 |
|
|
74 |
backend: PyTorch |
|
|
75 |
batch size: 1 |
|
|
76 |
mode: FP32 |
|
|
77 |
resolution: (769,769) |
|
|
78 |
Training Memory (GB): 8.5 |
|
|
79 |
Results: |
|
|
80 |
- Task: Semantic Segmentation |
|
|
81 |
Dataset: Cityscapes |
|
|
82 |
Metrics: |
|
|
83 |
mIoU: 78.97 |
|
|
84 |
mIoU(ms+flip): 80.46 |
|
|
85 |
Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_769x769_40k_cityscapes.py |
|
|
86 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_769x769_40k_cityscapes/deeplabv3plus_r50-d8_769x769_40k_cityscapes_20200606_114143-1dcb0e3c.pth |
|
|
87 |
- Name: deeplabv3plus_r101-d8_769x769_40k_cityscapes |
|
|
88 |
In Collection: deeplabv3plus |
|
|
89 |
Metadata: |
|
|
90 |
backbone: R-101-D8 |
|
|
91 |
crop size: (769,769) |
|
|
92 |
lr schd: 40000 |
|
|
93 |
inference time (ms/im): |
|
|
94 |
- value: 869.57 |
|
|
95 |
hardware: V100 |
|
|
96 |
backend: PyTorch |
|
|
97 |
batch size: 1 |
|
|
98 |
mode: FP32 |
|
|
99 |
resolution: (769,769) |
|
|
100 |
Training Memory (GB): 12.5 |
|
|
101 |
Results: |
|
|
102 |
- Task: Semantic Segmentation |
|
|
103 |
Dataset: Cityscapes |
|
|
104 |
Metrics: |
|
|
105 |
mIoU: 79.46 |
|
|
106 |
mIoU(ms+flip): 80.5 |
|
|
107 |
Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_769x769_40k_cityscapes.py |
|
|
108 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_769x769_40k_cityscapes/deeplabv3plus_r101-d8_769x769_40k_cityscapes_20200606_114304-ff414b9e.pth |
|
|
109 |
- Name: deeplabv3plus_r18-d8_512x1024_80k_cityscapes |
|
|
110 |
In Collection: deeplabv3plus |
|
|
111 |
Metadata: |
|
|
112 |
backbone: R-18-D8 |
|
|
113 |
crop size: (512,1024) |
|
|
114 |
lr schd: 80000 |
|
|
115 |
inference time (ms/im): |
|
|
116 |
- value: 70.08 |
|
|
117 |
hardware: V100 |
|
|
118 |
backend: PyTorch |
|
|
119 |
batch size: 1 |
|
|
120 |
mode: FP32 |
|
|
121 |
resolution: (512,1024) |
|
|
122 |
Training Memory (GB): 2.2 |
|
|
123 |
Results: |
|
|
124 |
- Task: Semantic Segmentation |
|
|
125 |
Dataset: Cityscapes |
|
|
126 |
Metrics: |
|
|
127 |
mIoU: 76.89 |
|
|
128 |
mIoU(ms+flip): 78.76 |
|
|
129 |
Config: configs/deeplabv3plus/deeplabv3plus_r18-d8_512x1024_80k_cityscapes.py |
|
|
130 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_512x1024_80k_cityscapes/deeplabv3plus_r18-d8_512x1024_80k_cityscapes_20201226_080942-cff257fe.pth |
|
|
131 |
- Name: deeplabv3plus_r50-d8_512x1024_80k_cityscapes |
|
|
132 |
In Collection: deeplabv3plus |
|
|
133 |
Metadata: |
|
|
134 |
backbone: R-50-D8 |
|
|
135 |
crop size: (512,1024) |
|
|
136 |
lr schd: 80000 |
|
|
137 |
Results: |
|
|
138 |
- Task: Semantic Segmentation |
|
|
139 |
Dataset: Cityscapes |
|
|
140 |
Metrics: |
|
|
141 |
mIoU: 80.09 |
|
|
142 |
mIoU(ms+flip): 81.13 |
|
|
143 |
Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_80k_cityscapes.py |
|
|
144 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_80k_cityscapes/deeplabv3plus_r50-d8_512x1024_80k_cityscapes_20200606_114049-f9fb496d.pth |
|
|
145 |
- Name: deeplabv3plus_r101-d8_512x1024_80k_cityscapes |
|
|
146 |
In Collection: deeplabv3plus |
|
|
147 |
Metadata: |
|
|
148 |
backbone: R-101-D8 |
|
|
149 |
crop size: (512,1024) |
|
|
150 |
lr schd: 80000 |
|
|
151 |
Results: |
|
|
152 |
- Task: Semantic Segmentation |
|
|
153 |
Dataset: Cityscapes |
|
|
154 |
Metrics: |
|
|
155 |
mIoU: 80.97 |
|
|
156 |
mIoU(ms+flip): 82.03 |
|
|
157 |
Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_80k_cityscapes.py |
|
|
158 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_80k_cityscapes/deeplabv3plus_r101-d8_512x1024_80k_cityscapes_20200606_114143-068fcfe9.pth |
|
|
159 |
- Name: deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes |
|
|
160 |
In Collection: deeplabv3plus |
|
|
161 |
Metadata: |
|
|
162 |
backbone: R-101-D8 |
|
|
163 |
crop size: (512,1024) |
|
|
164 |
lr schd: 80000 |
|
|
165 |
inference time (ms/im): |
|
|
166 |
- value: 127.06 |
|
|
167 |
hardware: V100 |
|
|
168 |
backend: PyTorch |
|
|
169 |
batch size: 1 |
|
|
170 |
mode: FP16 |
|
|
171 |
resolution: (512,1024) |
|
|
172 |
Training Memory (GB): 6.35 |
|
|
173 |
Results: |
|
|
174 |
- Task: Semantic Segmentation |
|
|
175 |
Dataset: Cityscapes |
|
|
176 |
Metrics: |
|
|
177 |
mIoU: 80.46 |
|
|
178 |
Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes.py |
|
|
179 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes/deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230920-f1104f4b.pth |
|
|
180 |
- Name: deeplabv3plus_r18-d8_769x769_80k_cityscapes |
|
|
181 |
In Collection: deeplabv3plus |
|
|
182 |
Metadata: |
|
|
183 |
backbone: R-18-D8 |
|
|
184 |
crop size: (769,769) |
|
|
185 |
lr schd: 80000 |
|
|
186 |
inference time (ms/im): |
|
|
187 |
- value: 174.22 |
|
|
188 |
hardware: V100 |
|
|
189 |
backend: PyTorch |
|
|
190 |
batch size: 1 |
|
|
191 |
mode: FP32 |
|
|
192 |
resolution: (769,769) |
|
|
193 |
Training Memory (GB): 2.5 |
|
|
194 |
Results: |
|
|
195 |
- Task: Semantic Segmentation |
|
|
196 |
Dataset: Cityscapes |
|
|
197 |
Metrics: |
|
|
198 |
mIoU: 76.26 |
|
|
199 |
mIoU(ms+flip): 77.91 |
|
|
200 |
Config: configs/deeplabv3plus/deeplabv3plus_r18-d8_769x769_80k_cityscapes.py |
|
|
201 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_769x769_80k_cityscapes/deeplabv3plus_r18-d8_769x769_80k_cityscapes_20201226_083346-f326e06a.pth |
|
|
202 |
- Name: deeplabv3plus_r50-d8_769x769_80k_cityscapes |
|
|
203 |
In Collection: deeplabv3plus |
|
|
204 |
Metadata: |
|
|
205 |
backbone: R-50-D8 |
|
|
206 |
crop size: (769,769) |
|
|
207 |
lr schd: 80000 |
|
|
208 |
Results: |
|
|
209 |
- Task: Semantic Segmentation |
|
|
210 |
Dataset: Cityscapes |
|
|
211 |
Metrics: |
|
|
212 |
mIoU: 79.83 |
|
|
213 |
mIoU(ms+flip): 81.48 |
|
|
214 |
Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_769x769_80k_cityscapes.py |
|
|
215 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_769x769_80k_cityscapes/deeplabv3plus_r50-d8_769x769_80k_cityscapes_20200606_210233-0e9dfdc4.pth |
|
|
216 |
- Name: deeplabv3plus_r101-d8_769x769_80k_cityscapes |
|
|
217 |
In Collection: deeplabv3plus |
|
|
218 |
Metadata: |
|
|
219 |
backbone: R-101-D8 |
|
|
220 |
crop size: (769,769) |
|
|
221 |
lr schd: 80000 |
|
|
222 |
Results: |
|
|
223 |
- Task: Semantic Segmentation |
|
|
224 |
Dataset: Cityscapes |
|
|
225 |
Metrics: |
|
|
226 |
mIoU: 80.98 |
|
|
227 |
mIoU(ms+flip): 82.18 |
|
|
228 |
Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_769x769_80k_cityscapes.py |
|
|
229 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_769x769_80k_cityscapes/deeplabv3plus_r101-d8_769x769_80k_cityscapes_20200607_000405-a7573d20.pth |
|
|
230 |
- Name: deeplabv3plus_r101-d16-mg124_512x1024_40k_cityscapes |
|
|
231 |
In Collection: deeplabv3plus |
|
|
232 |
Metadata: |
|
|
233 |
backbone: R-101-D16-MG124 |
|
|
234 |
crop size: (512,1024) |
|
|
235 |
lr schd: 40000 |
|
|
236 |
inference time (ms/im): |
|
|
237 |
- value: 133.69 |
|
|
238 |
hardware: V100 |
|
|
239 |
backend: PyTorch |
|
|
240 |
batch size: 1 |
|
|
241 |
mode: FP32 |
|
|
242 |
resolution: (512,1024) |
|
|
243 |
Training Memory (GB): 5.8 |
|
|
244 |
Results: |
|
|
245 |
- Task: Semantic Segmentation |
|
|
246 |
Dataset: Cityscapes |
|
|
247 |
Metrics: |
|
|
248 |
mIoU: 79.09 |
|
|
249 |
mIoU(ms+flip): 80.36 |
|
|
250 |
Config: configs/deeplabv3plus/deeplabv3plus_r101-d16-mg124_512x1024_40k_cityscapes.py |
|
|
251 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d16-mg124_512x1024_40k_cityscapes/deeplabv3plus_r101-d16-mg124_512x1024_40k_cityscapes_20200908_005644-cf9ce186.pth |
|
|
252 |
- Name: deeplabv3plus_r101-d16-mg124_512x1024_80k_cityscapes |
|
|
253 |
In Collection: deeplabv3plus |
|
|
254 |
Metadata: |
|
|
255 |
backbone: R-101-D16-MG124 |
|
|
256 |
crop size: (512,1024) |
|
|
257 |
lr schd: 80000 |
|
|
258 |
Training Memory (GB): 9.9 |
|
|
259 |
Results: |
|
|
260 |
- Task: Semantic Segmentation |
|
|
261 |
Dataset: Cityscapes |
|
|
262 |
Metrics: |
|
|
263 |
mIoU: 79.9 |
|
|
264 |
mIoU(ms+flip): 81.33 |
|
|
265 |
Config: configs/deeplabv3plus/deeplabv3plus_r101-d16-mg124_512x1024_80k_cityscapes.py |
|
|
266 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d16-mg124_512x1024_80k_cityscapes/deeplabv3plus_r101-d16-mg124_512x1024_80k_cityscapes_20200908_005644-ee6158e0.pth |
|
|
267 |
- Name: deeplabv3plus_r18b-d8_512x1024_80k_cityscapes |
|
|
268 |
In Collection: deeplabv3plus |
|
|
269 |
Metadata: |
|
|
270 |
backbone: R-18b-D8 |
|
|
271 |
crop size: (512,1024) |
|
|
272 |
lr schd: 80000 |
|
|
273 |
inference time (ms/im): |
|
|
274 |
- value: 66.89 |
|
|
275 |
hardware: V100 |
|
|
276 |
backend: PyTorch |
|
|
277 |
batch size: 1 |
|
|
278 |
mode: FP32 |
|
|
279 |
resolution: (512,1024) |
|
|
280 |
Training Memory (GB): 2.1 |
|
|
281 |
Results: |
|
|
282 |
- Task: Semantic Segmentation |
|
|
283 |
Dataset: Cityscapes |
|
|
284 |
Metrics: |
|
|
285 |
mIoU: 75.87 |
|
|
286 |
mIoU(ms+flip): 77.52 |
|
|
287 |
Config: configs/deeplabv3plus/deeplabv3plus_r18b-d8_512x1024_80k_cityscapes.py |
|
|
288 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18b-d8_512x1024_80k_cityscapes/deeplabv3plus_r18b-d8_512x1024_80k_cityscapes_20201226_090828-e451abd9.pth |
|
|
289 |
- Name: deeplabv3plus_r50b-d8_512x1024_80k_cityscapes |
|
|
290 |
In Collection: deeplabv3plus |
|
|
291 |
Metadata: |
|
|
292 |
backbone: R-50b-D8 |
|
|
293 |
crop size: (512,1024) |
|
|
294 |
lr schd: 80000 |
|
|
295 |
inference time (ms/im): |
|
|
296 |
- value: 253.81 |
|
|
297 |
hardware: V100 |
|
|
298 |
backend: PyTorch |
|
|
299 |
batch size: 1 |
|
|
300 |
mode: FP32 |
|
|
301 |
resolution: (512,1024) |
|
|
302 |
Training Memory (GB): 7.4 |
|
|
303 |
Results: |
|
|
304 |
- Task: Semantic Segmentation |
|
|
305 |
Dataset: Cityscapes |
|
|
306 |
Metrics: |
|
|
307 |
mIoU: 80.28 |
|
|
308 |
mIoU(ms+flip): 81.44 |
|
|
309 |
Config: configs/deeplabv3plus/deeplabv3plus_r50b-d8_512x1024_80k_cityscapes.py |
|
|
310 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50b-d8_512x1024_80k_cityscapes/deeplabv3plus_r50b-d8_512x1024_80k_cityscapes_20201225_213645-a97e4e43.pth |
|
|
311 |
- Name: deeplabv3plus_r101b-d8_512x1024_80k_cityscapes |
|
|
312 |
In Collection: deeplabv3plus |
|
|
313 |
Metadata: |
|
|
314 |
backbone: R-101b-D8 |
|
|
315 |
crop size: (512,1024) |
|
|
316 |
lr schd: 80000 |
|
|
317 |
inference time (ms/im): |
|
|
318 |
- value: 384.62 |
|
|
319 |
hardware: V100 |
|
|
320 |
backend: PyTorch |
|
|
321 |
batch size: 1 |
|
|
322 |
mode: FP32 |
|
|
323 |
resolution: (512,1024) |
|
|
324 |
Training Memory (GB): 10.9 |
|
|
325 |
Results: |
|
|
326 |
- Task: Semantic Segmentation |
|
|
327 |
Dataset: Cityscapes |
|
|
328 |
Metrics: |
|
|
329 |
mIoU: 80.16 |
|
|
330 |
mIoU(ms+flip): 81.41 |
|
|
331 |
Config: configs/deeplabv3plus/deeplabv3plus_r101b-d8_512x1024_80k_cityscapes.py |
|
|
332 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101b-d8_512x1024_80k_cityscapes/deeplabv3plus_r101b-d8_512x1024_80k_cityscapes_20201226_190843-9c3c93a4.pth |
|
|
333 |
- Name: deeplabv3plus_r18b-d8_769x769_80k_cityscapes |
|
|
334 |
In Collection: deeplabv3plus |
|
|
335 |
Metadata: |
|
|
336 |
backbone: R-18b-D8 |
|
|
337 |
crop size: (769,769) |
|
|
338 |
lr schd: 80000 |
|
|
339 |
inference time (ms/im): |
|
|
340 |
- value: 167.79 |
|
|
341 |
hardware: V100 |
|
|
342 |
backend: PyTorch |
|
|
343 |
batch size: 1 |
|
|
344 |
mode: FP32 |
|
|
345 |
resolution: (769,769) |
|
|
346 |
Training Memory (GB): 2.4 |
|
|
347 |
Results: |
|
|
348 |
- Task: Semantic Segmentation |
|
|
349 |
Dataset: Cityscapes |
|
|
350 |
Metrics: |
|
|
351 |
mIoU: 76.36 |
|
|
352 |
mIoU(ms+flip): 78.24 |
|
|
353 |
Config: configs/deeplabv3plus/deeplabv3plus_r18b-d8_769x769_80k_cityscapes.py |
|
|
354 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18b-d8_769x769_80k_cityscapes/deeplabv3plus_r18b-d8_769x769_80k_cityscapes_20201226_151312-2c868aff.pth |
|
|
355 |
- Name: deeplabv3plus_r50b-d8_769x769_80k_cityscapes |
|
|
356 |
In Collection: deeplabv3plus |
|
|
357 |
Metadata: |
|
|
358 |
backbone: R-50b-D8 |
|
|
359 |
crop size: (769,769) |
|
|
360 |
lr schd: 80000 |
|
|
361 |
inference time (ms/im): |
|
|
362 |
- value: 581.4 |
|
|
363 |
hardware: V100 |
|
|
364 |
backend: PyTorch |
|
|
365 |
batch size: 1 |
|
|
366 |
mode: FP32 |
|
|
367 |
resolution: (769,769) |
|
|
368 |
Training Memory (GB): 8.4 |
|
|
369 |
Results: |
|
|
370 |
- Task: Semantic Segmentation |
|
|
371 |
Dataset: Cityscapes |
|
|
372 |
Metrics: |
|
|
373 |
mIoU: 79.41 |
|
|
374 |
mIoU(ms+flip): 80.56 |
|
|
375 |
Config: configs/deeplabv3plus/deeplabv3plus_r50b-d8_769x769_80k_cityscapes.py |
|
|
376 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50b-d8_769x769_80k_cityscapes/deeplabv3plus_r50b-d8_769x769_80k_cityscapes_20201225_224655-8b596d1c.pth |
|
|
377 |
- Name: deeplabv3plus_r101b-d8_769x769_80k_cityscapes |
|
|
378 |
In Collection: deeplabv3plus |
|
|
379 |
Metadata: |
|
|
380 |
backbone: R-101b-D8 |
|
|
381 |
crop size: (769,769) |
|
|
382 |
lr schd: 80000 |
|
|
383 |
inference time (ms/im): |
|
|
384 |
- value: 909.09 |
|
|
385 |
hardware: V100 |
|
|
386 |
backend: PyTorch |
|
|
387 |
batch size: 1 |
|
|
388 |
mode: FP32 |
|
|
389 |
resolution: (769,769) |
|
|
390 |
Training Memory (GB): 12.3 |
|
|
391 |
Results: |
|
|
392 |
- Task: Semantic Segmentation |
|
|
393 |
Dataset: Cityscapes |
|
|
394 |
Metrics: |
|
|
395 |
mIoU: 79.88 |
|
|
396 |
mIoU(ms+flip): 81.46 |
|
|
397 |
Config: configs/deeplabv3plus/deeplabv3plus_r101b-d8_769x769_80k_cityscapes.py |
|
|
398 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101b-d8_769x769_80k_cityscapes/deeplabv3plus_r101b-d8_769x769_80k_cityscapes_20201226_205041-227cdf7c.pth |
|
|
399 |
- Name: deeplabv3plus_r50-d8_512x512_80k_ade20k |
|
|
400 |
In Collection: deeplabv3plus |
|
|
401 |
Metadata: |
|
|
402 |
backbone: R-50-D8 |
|
|
403 |
crop size: (512,512) |
|
|
404 |
lr schd: 80000 |
|
|
405 |
inference time (ms/im): |
|
|
406 |
- value: 47.6 |
|
|
407 |
hardware: V100 |
|
|
408 |
backend: PyTorch |
|
|
409 |
batch size: 1 |
|
|
410 |
mode: FP32 |
|
|
411 |
resolution: (512,512) |
|
|
412 |
Training Memory (GB): 10.6 |
|
|
413 |
Results: |
|
|
414 |
- Task: Semantic Segmentation |
|
|
415 |
Dataset: ADE20K |
|
|
416 |
Metrics: |
|
|
417 |
mIoU: 42.72 |
|
|
418 |
mIoU(ms+flip): 43.75 |
|
|
419 |
Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_ade20k.py |
|
|
420 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_ade20k/deeplabv3plus_r50-d8_512x512_80k_ade20k_20200614_185028-bf1400d8.pth |
|
|
421 |
- Name: deeplabv3plus_r101-d8_512x512_80k_ade20k |
|
|
422 |
In Collection: deeplabv3plus |
|
|
423 |
Metadata: |
|
|
424 |
backbone: R-101-D8 |
|
|
425 |
crop size: (512,512) |
|
|
426 |
lr schd: 80000 |
|
|
427 |
inference time (ms/im): |
|
|
428 |
- value: 70.62 |
|
|
429 |
hardware: V100 |
|
|
430 |
backend: PyTorch |
|
|
431 |
batch size: 1 |
|
|
432 |
mode: FP32 |
|
|
433 |
resolution: (512,512) |
|
|
434 |
Training Memory (GB): 14.1 |
|
|
435 |
Results: |
|
|
436 |
- Task: Semantic Segmentation |
|
|
437 |
Dataset: ADE20K |
|
|
438 |
Metrics: |
|
|
439 |
mIoU: 44.6 |
|
|
440 |
mIoU(ms+flip): 46.06 |
|
|
441 |
Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_ade20k.py |
|
|
442 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_ade20k/deeplabv3plus_r101-d8_512x512_80k_ade20k_20200615_014139-d5730af7.pth |
|
|
443 |
- Name: deeplabv3plus_r50-d8_512x512_160k_ade20k |
|
|
444 |
In Collection: deeplabv3plus |
|
|
445 |
Metadata: |
|
|
446 |
backbone: R-50-D8 |
|
|
447 |
crop size: (512,512) |
|
|
448 |
lr schd: 160000 |
|
|
449 |
Results: |
|
|
450 |
- Task: Semantic Segmentation |
|
|
451 |
Dataset: ADE20K |
|
|
452 |
Metrics: |
|
|
453 |
mIoU: 43.95 |
|
|
454 |
mIoU(ms+flip): 44.93 |
|
|
455 |
Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_512x512_160k_ade20k.py |
|
|
456 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_160k_ade20k/deeplabv3plus_r50-d8_512x512_160k_ade20k_20200615_124504-6135c7e0.pth |
|
|
457 |
- Name: deeplabv3plus_r101-d8_512x512_160k_ade20k |
|
|
458 |
In Collection: deeplabv3plus |
|
|
459 |
Metadata: |
|
|
460 |
backbone: R-101-D8 |
|
|
461 |
crop size: (512,512) |
|
|
462 |
lr schd: 160000 |
|
|
463 |
Results: |
|
|
464 |
- Task: Semantic Segmentation |
|
|
465 |
Dataset: ADE20K |
|
|
466 |
Metrics: |
|
|
467 |
mIoU: 45.47 |
|
|
468 |
mIoU(ms+flip): 46.35 |
|
|
469 |
Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_512x512_160k_ade20k.py |
|
|
470 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_160k_ade20k/deeplabv3plus_r101-d8_512x512_160k_ade20k_20200615_123232-38ed86bb.pth |
|
|
471 |
- Name: deeplabv3plus_r50-d8_512x512_20k_voc12aug |
|
|
472 |
In Collection: deeplabv3plus |
|
|
473 |
Metadata: |
|
|
474 |
backbone: R-50-D8 |
|
|
475 |
crop size: (512,512) |
|
|
476 |
lr schd: 20000 |
|
|
477 |
inference time (ms/im): |
|
|
478 |
- value: 47.62 |
|
|
479 |
hardware: V100 |
|
|
480 |
backend: PyTorch |
|
|
481 |
batch size: 1 |
|
|
482 |
mode: FP32 |
|
|
483 |
resolution: (512,512) |
|
|
484 |
Training Memory (GB): 7.6 |
|
|
485 |
Results: |
|
|
486 |
- Task: Semantic Segmentation |
|
|
487 |
Dataset: Pascal VOC 2012 + Aug |
|
|
488 |
Metrics: |
|
|
489 |
mIoU: 75.93 |
|
|
490 |
mIoU(ms+flip): 77.5 |
|
|
491 |
Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_512x512_20k_voc12aug.py |
|
|
492 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_20k_voc12aug/deeplabv3plus_r50-d8_512x512_20k_voc12aug_20200617_102323-aad58ef1.pth |
|
|
493 |
- Name: deeplabv3plus_r101-d8_512x512_20k_voc12aug |
|
|
494 |
In Collection: deeplabv3plus |
|
|
495 |
Metadata: |
|
|
496 |
backbone: R-101-D8 |
|
|
497 |
crop size: (512,512) |
|
|
498 |
lr schd: 20000 |
|
|
499 |
inference time (ms/im): |
|
|
500 |
- value: 72.05 |
|
|
501 |
hardware: V100 |
|
|
502 |
backend: PyTorch |
|
|
503 |
batch size: 1 |
|
|
504 |
mode: FP32 |
|
|
505 |
resolution: (512,512) |
|
|
506 |
Training Memory (GB): 11.0 |
|
|
507 |
Results: |
|
|
508 |
- Task: Semantic Segmentation |
|
|
509 |
Dataset: Pascal VOC 2012 + Aug |
|
|
510 |
Metrics: |
|
|
511 |
mIoU: 77.22 |
|
|
512 |
mIoU(ms+flip): 78.59 |
|
|
513 |
Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_512x512_20k_voc12aug.py |
|
|
514 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_20k_voc12aug/deeplabv3plus_r101-d8_512x512_20k_voc12aug_20200617_102345-c7ff3d56.pth |
|
|
515 |
- Name: deeplabv3plus_r50-d8_512x512_40k_voc12aug |
|
|
516 |
In Collection: deeplabv3plus |
|
|
517 |
Metadata: |
|
|
518 |
backbone: R-50-D8 |
|
|
519 |
crop size: (512,512) |
|
|
520 |
lr schd: 40000 |
|
|
521 |
Results: |
|
|
522 |
- Task: Semantic Segmentation |
|
|
523 |
Dataset: Pascal VOC 2012 + Aug |
|
|
524 |
Metrics: |
|
|
525 |
mIoU: 76.81 |
|
|
526 |
mIoU(ms+flip): 77.57 |
|
|
527 |
Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_512x512_40k_voc12aug.py |
|
|
528 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_40k_voc12aug/deeplabv3plus_r50-d8_512x512_40k_voc12aug_20200613_161759-e1b43aa9.pth |
|
|
529 |
- Name: deeplabv3plus_r101-d8_512x512_40k_voc12aug |
|
|
530 |
In Collection: deeplabv3plus |
|
|
531 |
Metadata: |
|
|
532 |
backbone: R-101-D8 |
|
|
533 |
crop size: (512,512) |
|
|
534 |
lr schd: 40000 |
|
|
535 |
Results: |
|
|
536 |
- Task: Semantic Segmentation |
|
|
537 |
Dataset: Pascal VOC 2012 + Aug |
|
|
538 |
Metrics: |
|
|
539 |
mIoU: 78.62 |
|
|
540 |
mIoU(ms+flip): 79.53 |
|
|
541 |
Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_512x512_40k_voc12aug.py |
|
|
542 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_40k_voc12aug/deeplabv3plus_r101-d8_512x512_40k_voc12aug_20200613_205333-faf03387.pth |
|
|
543 |
- Name: deeplabv3plus_r101-d8_480x480_40k_pascal_context |
|
|
544 |
In Collection: deeplabv3plus |
|
|
545 |
Metadata: |
|
|
546 |
backbone: R-101-D8 |
|
|
547 |
crop size: (480,480) |
|
|
548 |
lr schd: 40000 |
|
|
549 |
inference time (ms/im): |
|
|
550 |
- value: 110.01 |
|
|
551 |
hardware: V100 |
|
|
552 |
backend: PyTorch |
|
|
553 |
batch size: 1 |
|
|
554 |
mode: FP32 |
|
|
555 |
resolution: (480,480) |
|
|
556 |
Results: |
|
|
557 |
- Task: Semantic Segmentation |
|
|
558 |
Dataset: Pascal Context |
|
|
559 |
Metrics: |
|
|
560 |
mIoU: 47.3 |
|
|
561 |
mIoU(ms+flip): 48.47 |
|
|
562 |
Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_480x480_40k_pascal_context.py |
|
|
563 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_40k_pascal_context/deeplabv3plus_r101-d8_480x480_40k_pascal_context_20200911_165459-d3c8a29e.pth |
|
|
564 |
- Name: deeplabv3plus_r101-d8_480x480_80k_pascal_context |
|
|
565 |
In Collection: deeplabv3plus |
|
|
566 |
Metadata: |
|
|
567 |
backbone: R-101-D8 |
|
|
568 |
crop size: (480,480) |
|
|
569 |
lr schd: 80000 |
|
|
570 |
Results: |
|
|
571 |
- Task: Semantic Segmentation |
|
|
572 |
Dataset: Pascal Context |
|
|
573 |
Metrics: |
|
|
574 |
mIoU: 47.23 |
|
|
575 |
mIoU(ms+flip): 48.26 |
|
|
576 |
Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context.py |
|
|
577 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context/deeplabv3plus_r101-d8_480x480_80k_pascal_context_20200911_155322-145d3ee8.pth |
|
|
578 |
- Name: deeplabv3plus_r101-d8_480x480_40k_pascal_context_59 |
|
|
579 |
In Collection: deeplabv3plus |
|
|
580 |
Metadata: |
|
|
581 |
backbone: R-101-D8 |
|
|
582 |
crop size: (480,480) |
|
|
583 |
lr schd: 40000 |
|
|
584 |
Results: |
|
|
585 |
- Task: Semantic Segmentation |
|
|
586 |
Dataset: Pascal Context 59 |
|
|
587 |
Metrics: |
|
|
588 |
mIoU: 52.86 |
|
|
589 |
mIoU(ms+flip): 54.54 |
|
|
590 |
Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_480x480_40k_pascal_context_59.py |
|
|
591 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_40k_pascal_context_59/deeplabv3plus_r101-d8_480x480_40k_pascal_context_59_20210416_111233-ed937f15.pth |
|
|
592 |
- Name: deeplabv3plus_r101-d8_480x480_80k_pascal_context_59 |
|
|
593 |
In Collection: deeplabv3plus |
|
|
594 |
Metadata: |
|
|
595 |
backbone: R-101-D8 |
|
|
596 |
crop size: (480,480) |
|
|
597 |
lr schd: 80000 |
|
|
598 |
Results: |
|
|
599 |
- Task: Semantic Segmentation |
|
|
600 |
Dataset: Pascal Context 59 |
|
|
601 |
Metrics: |
|
|
602 |
mIoU: 53.2 |
|
|
603 |
mIoU(ms+flip): 54.67 |
|
|
604 |
Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context_59.py |
|
|
605 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context_59/deeplabv3plus_r101-d8_480x480_80k_pascal_context_59_20210416_111127-7ca0331d.pth |
|
|
606 |
- Name: deeplabv3plus_r18-d8_512x512_80k_loveda |
|
|
607 |
In Collection: deeplabv3plus |
|
|
608 |
Metadata: |
|
|
609 |
backbone: R-18-D8 |
|
|
610 |
crop size: (512,512) |
|
|
611 |
lr schd: 80000 |
|
|
612 |
inference time (ms/im): |
|
|
613 |
- value: 39.11 |
|
|
614 |
hardware: V100 |
|
|
615 |
backend: PyTorch |
|
|
616 |
batch size: 1 |
|
|
617 |
mode: FP32 |
|
|
618 |
resolution: (512,512) |
|
|
619 |
Training Memory (GB): 1.93 |
|
|
620 |
Results: |
|
|
621 |
- Task: Semantic Segmentation |
|
|
622 |
Dataset: LoveDA |
|
|
623 |
Metrics: |
|
|
624 |
mIoU: 50.28 |
|
|
625 |
mIoU(ms+flip): 50.47 |
|
|
626 |
Config: configs/deeplabv3plus/deeplabv3plus_r18-d8_512x512_80k_loveda.py |
|
|
627 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_512x512_80k_loveda/deeplabv3plus_r18-d8_512x512_80k_loveda_20211104_132800-ce0fa0ca.pth |
|
|
628 |
- Name: deeplabv3plus_r50-d8_512x512_80k_loveda |
|
|
629 |
In Collection: deeplabv3plus |
|
|
630 |
Metadata: |
|
|
631 |
backbone: R-50-D8 |
|
|
632 |
crop size: (512,512) |
|
|
633 |
lr schd: 80000 |
|
|
634 |
inference time (ms/im): |
|
|
635 |
- value: 166.67 |
|
|
636 |
hardware: V100 |
|
|
637 |
backend: PyTorch |
|
|
638 |
batch size: 1 |
|
|
639 |
mode: FP32 |
|
|
640 |
resolution: (512,512) |
|
|
641 |
Training Memory (GB): 7.37 |
|
|
642 |
Results: |
|
|
643 |
- Task: Semantic Segmentation |
|
|
644 |
Dataset: LoveDA |
|
|
645 |
Metrics: |
|
|
646 |
mIoU: 50.99 |
|
|
647 |
mIoU(ms+flip): 50.65 |
|
|
648 |
Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_loveda.py |
|
|
649 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_loveda/deeplabv3plus_r50-d8_512x512_80k_loveda_20211105_080442-f0720392.pth |
|
|
650 |
- Name: deeplabv3plus_r101-d8_512x512_80k_loveda |
|
|
651 |
In Collection: deeplabv3plus |
|
|
652 |
Metadata: |
|
|
653 |
backbone: R-101-D8 |
|
|
654 |
crop size: (512,512) |
|
|
655 |
lr schd: 80000 |
|
|
656 |
inference time (ms/im): |
|
|
657 |
- value: 230.95 |
|
|
658 |
hardware: V100 |
|
|
659 |
backend: PyTorch |
|
|
660 |
batch size: 1 |
|
|
661 |
mode: FP32 |
|
|
662 |
resolution: (512,512) |
|
|
663 |
Training Memory (GB): 10.84 |
|
|
664 |
Results: |
|
|
665 |
- Task: Semantic Segmentation |
|
|
666 |
Dataset: LoveDA |
|
|
667 |
Metrics: |
|
|
668 |
mIoU: 51.47 |
|
|
669 |
mIoU(ms+flip): 51.32 |
|
|
670 |
Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_loveda.py |
|
|
671 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_loveda/deeplabv3plus_r101-d8_512x512_80k_loveda_20211105_110759-4c1f297e.pth |