--- a +++ b/configs/deeplabv3plus/deeplabv3plus.yml @@ -0,0 +1,671 @@ +Collections: +- Name: deeplabv3plus + Metadata: + Training Data: + - Cityscapes + - ADE20K + - Pascal VOC 2012 + Aug + - Pascal Context + - Pascal Context 59 + - LoveDA + Paper: + URL: https://arxiv.org/abs/1802.02611 + Title: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation + README: configs/deeplabv3plus/README.md + Code: + URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/sep_aspp_head.py#L30 + Version: v0.17.0 + Converted From: + Code: https://github.com/tensorflow/models/tree/master/research/deeplab +Models: +- Name: deeplabv3plus_r50-d8_512x1024_40k_cityscapes + In Collection: deeplabv3plus + Metadata: + backbone: R-50-D8 + crop size: (512,1024) + lr schd: 40000 + inference time (ms/im): + - value: 253.81 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,1024) + Training Memory (GB): 7.5 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.61 + mIoU(ms+flip): 81.01 + Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_40k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_40k_cityscapes/deeplabv3plus_r50-d8_512x1024_40k_cityscapes_20200605_094610-d222ffcd.pth +- Name: deeplabv3plus_r101-d8_512x1024_40k_cityscapes + In Collection: deeplabv3plus + Metadata: + backbone: R-101-D8 + crop size: (512,1024) + lr schd: 40000 + inference time (ms/im): + - value: 384.62 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,1024) + Training Memory (GB): 11.0 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 80.21 + mIoU(ms+flip): 81.82 + Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_40k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_40k_cityscapes/deeplabv3plus_r101-d8_512x1024_40k_cityscapes_20200605_094614-3769eecf.pth +- Name: deeplabv3plus_r50-d8_769x769_40k_cityscapes + In Collection: deeplabv3plus + Metadata: + backbone: R-50-D8 + crop size: (769,769) + lr schd: 40000 + inference time (ms/im): + - value: 581.4 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (769,769) + Training Memory (GB): 8.5 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.97 + mIoU(ms+flip): 80.46 + Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_769x769_40k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_769x769_40k_cityscapes/deeplabv3plus_r50-d8_769x769_40k_cityscapes_20200606_114143-1dcb0e3c.pth +- Name: deeplabv3plus_r101-d8_769x769_40k_cityscapes + In Collection: deeplabv3plus + Metadata: + backbone: R-101-D8 + crop size: (769,769) + lr schd: 40000 + inference time (ms/im): + - value: 869.57 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (769,769) + Training Memory (GB): 12.5 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.46 + mIoU(ms+flip): 80.5 + Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_769x769_40k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_769x769_40k_cityscapes/deeplabv3plus_r101-d8_769x769_40k_cityscapes_20200606_114304-ff414b9e.pth +- Name: deeplabv3plus_r18-d8_512x1024_80k_cityscapes + In Collection: deeplabv3plus + Metadata: + backbone: R-18-D8 + crop size: (512,1024) + lr schd: 80000 + inference time (ms/im): + - value: 70.08 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,1024) + Training Memory (GB): 2.2 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 76.89 + mIoU(ms+flip): 78.76 + Config: configs/deeplabv3plus/deeplabv3plus_r18-d8_512x1024_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_512x1024_80k_cityscapes/deeplabv3plus_r18-d8_512x1024_80k_cityscapes_20201226_080942-cff257fe.pth +- Name: deeplabv3plus_r50-d8_512x1024_80k_cityscapes + In Collection: deeplabv3plus + Metadata: + backbone: R-50-D8 + crop size: (512,1024) + lr schd: 80000 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 80.09 + mIoU(ms+flip): 81.13 + Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_80k_cityscapes/deeplabv3plus_r50-d8_512x1024_80k_cityscapes_20200606_114049-f9fb496d.pth +- Name: deeplabv3plus_r101-d8_512x1024_80k_cityscapes + In Collection: deeplabv3plus + Metadata: + backbone: R-101-D8 + crop size: (512,1024) + lr schd: 80000 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 80.97 + mIoU(ms+flip): 82.03 + Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_80k_cityscapes/deeplabv3plus_r101-d8_512x1024_80k_cityscapes_20200606_114143-068fcfe9.pth +- Name: deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes + In Collection: deeplabv3plus + Metadata: + backbone: R-101-D8 + crop size: (512,1024) + lr schd: 80000 + inference time (ms/im): + - value: 127.06 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP16 + resolution: (512,1024) + Training Memory (GB): 6.35 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 80.46 + Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes/deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230920-f1104f4b.pth +- Name: deeplabv3plus_r18-d8_769x769_80k_cityscapes + In Collection: deeplabv3plus + Metadata: + backbone: R-18-D8 + crop size: (769,769) + lr schd: 80000 + inference time (ms/im): + - value: 174.22 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (769,769) + Training Memory (GB): 2.5 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 76.26 + mIoU(ms+flip): 77.91 + Config: configs/deeplabv3plus/deeplabv3plus_r18-d8_769x769_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_769x769_80k_cityscapes/deeplabv3plus_r18-d8_769x769_80k_cityscapes_20201226_083346-f326e06a.pth +- Name: deeplabv3plus_r50-d8_769x769_80k_cityscapes + In Collection: deeplabv3plus + Metadata: + backbone: R-50-D8 + crop size: (769,769) + lr schd: 80000 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.83 + mIoU(ms+flip): 81.48 + Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_769x769_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_769x769_80k_cityscapes/deeplabv3plus_r50-d8_769x769_80k_cityscapes_20200606_210233-0e9dfdc4.pth +- Name: deeplabv3plus_r101-d8_769x769_80k_cityscapes + In Collection: deeplabv3plus + Metadata: + backbone: R-101-D8 + crop size: (769,769) + lr schd: 80000 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 80.98 + mIoU(ms+flip): 82.18 + Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_769x769_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_769x769_80k_cityscapes/deeplabv3plus_r101-d8_769x769_80k_cityscapes_20200607_000405-a7573d20.pth +- Name: deeplabv3plus_r101-d16-mg124_512x1024_40k_cityscapes + In Collection: deeplabv3plus + Metadata: + backbone: R-101-D16-MG124 + crop size: (512,1024) + lr schd: 40000 + inference time (ms/im): + - value: 133.69 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,1024) + Training Memory (GB): 5.8 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.09 + mIoU(ms+flip): 80.36 + Config: configs/deeplabv3plus/deeplabv3plus_r101-d16-mg124_512x1024_40k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d16-mg124_512x1024_40k_cityscapes/deeplabv3plus_r101-d16-mg124_512x1024_40k_cityscapes_20200908_005644-cf9ce186.pth +- Name: deeplabv3plus_r101-d16-mg124_512x1024_80k_cityscapes + In Collection: deeplabv3plus + Metadata: + backbone: R-101-D16-MG124 + crop size: (512,1024) + lr schd: 80000 + Training Memory (GB): 9.9 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.9 + mIoU(ms+flip): 81.33 + Config: configs/deeplabv3plus/deeplabv3plus_r101-d16-mg124_512x1024_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d16-mg124_512x1024_80k_cityscapes/deeplabv3plus_r101-d16-mg124_512x1024_80k_cityscapes_20200908_005644-ee6158e0.pth +- Name: deeplabv3plus_r18b-d8_512x1024_80k_cityscapes + In Collection: deeplabv3plus + Metadata: + backbone: R-18b-D8 + crop size: (512,1024) + lr schd: 80000 + inference time (ms/im): + - value: 66.89 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,1024) + Training Memory (GB): 2.1 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 75.87 + mIoU(ms+flip): 77.52 + Config: configs/deeplabv3plus/deeplabv3plus_r18b-d8_512x1024_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18b-d8_512x1024_80k_cityscapes/deeplabv3plus_r18b-d8_512x1024_80k_cityscapes_20201226_090828-e451abd9.pth +- Name: deeplabv3plus_r50b-d8_512x1024_80k_cityscapes + In Collection: deeplabv3plus + Metadata: + backbone: R-50b-D8 + crop size: (512,1024) + lr schd: 80000 + inference time (ms/im): + - value: 253.81 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,1024) + Training Memory (GB): 7.4 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 80.28 + mIoU(ms+flip): 81.44 + Config: configs/deeplabv3plus/deeplabv3plus_r50b-d8_512x1024_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50b-d8_512x1024_80k_cityscapes/deeplabv3plus_r50b-d8_512x1024_80k_cityscapes_20201225_213645-a97e4e43.pth +- Name: deeplabv3plus_r101b-d8_512x1024_80k_cityscapes + In Collection: deeplabv3plus + Metadata: + backbone: R-101b-D8 + crop size: (512,1024) + lr schd: 80000 + inference time (ms/im): + - value: 384.62 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,1024) + Training Memory (GB): 10.9 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 80.16 + mIoU(ms+flip): 81.41 + Config: configs/deeplabv3plus/deeplabv3plus_r101b-d8_512x1024_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101b-d8_512x1024_80k_cityscapes/deeplabv3plus_r101b-d8_512x1024_80k_cityscapes_20201226_190843-9c3c93a4.pth +- Name: deeplabv3plus_r18b-d8_769x769_80k_cityscapes + In Collection: deeplabv3plus + Metadata: + backbone: R-18b-D8 + crop size: (769,769) + lr schd: 80000 + inference time (ms/im): + - value: 167.79 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (769,769) + Training Memory (GB): 2.4 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 76.36 + mIoU(ms+flip): 78.24 + Config: configs/deeplabv3plus/deeplabv3plus_r18b-d8_769x769_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18b-d8_769x769_80k_cityscapes/deeplabv3plus_r18b-d8_769x769_80k_cityscapes_20201226_151312-2c868aff.pth +- Name: deeplabv3plus_r50b-d8_769x769_80k_cityscapes + In Collection: deeplabv3plus + Metadata: + backbone: R-50b-D8 + crop size: (769,769) + lr schd: 80000 + inference time (ms/im): + - value: 581.4 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (769,769) + Training Memory (GB): 8.4 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.41 + mIoU(ms+flip): 80.56 + Config: configs/deeplabv3plus/deeplabv3plus_r50b-d8_769x769_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50b-d8_769x769_80k_cityscapes/deeplabv3plus_r50b-d8_769x769_80k_cityscapes_20201225_224655-8b596d1c.pth +- Name: deeplabv3plus_r101b-d8_769x769_80k_cityscapes + In Collection: deeplabv3plus + Metadata: + backbone: R-101b-D8 + crop size: (769,769) + lr schd: 80000 + inference time (ms/im): + - value: 909.09 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (769,769) + Training Memory (GB): 12.3 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.88 + mIoU(ms+flip): 81.46 + Config: configs/deeplabv3plus/deeplabv3plus_r101b-d8_769x769_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101b-d8_769x769_80k_cityscapes/deeplabv3plus_r101b-d8_769x769_80k_cityscapes_20201226_205041-227cdf7c.pth +- Name: deeplabv3plus_r50-d8_512x512_80k_ade20k + In Collection: deeplabv3plus + Metadata: + backbone: R-50-D8 + crop size: (512,512) + lr schd: 80000 + inference time (ms/im): + - value: 47.6 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,512) + Training Memory (GB): 10.6 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 42.72 + mIoU(ms+flip): 43.75 + Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_ade20k.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_ade20k/deeplabv3plus_r50-d8_512x512_80k_ade20k_20200614_185028-bf1400d8.pth +- Name: deeplabv3plus_r101-d8_512x512_80k_ade20k + In Collection: deeplabv3plus + Metadata: + backbone: R-101-D8 + crop size: (512,512) + lr schd: 80000 + inference time (ms/im): + - value: 70.62 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,512) + Training Memory (GB): 14.1 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 44.6 + mIoU(ms+flip): 46.06 + Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_ade20k.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_ade20k/deeplabv3plus_r101-d8_512x512_80k_ade20k_20200615_014139-d5730af7.pth +- Name: deeplabv3plus_r50-d8_512x512_160k_ade20k + In Collection: deeplabv3plus + Metadata: + backbone: R-50-D8 + crop size: (512,512) + lr schd: 160000 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 43.95 + mIoU(ms+flip): 44.93 + Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_512x512_160k_ade20k.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_160k_ade20k/deeplabv3plus_r50-d8_512x512_160k_ade20k_20200615_124504-6135c7e0.pth +- Name: deeplabv3plus_r101-d8_512x512_160k_ade20k + In Collection: deeplabv3plus + Metadata: + backbone: R-101-D8 + crop size: (512,512) + lr schd: 160000 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 45.47 + mIoU(ms+flip): 46.35 + Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_512x512_160k_ade20k.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_160k_ade20k/deeplabv3plus_r101-d8_512x512_160k_ade20k_20200615_123232-38ed86bb.pth +- Name: deeplabv3plus_r50-d8_512x512_20k_voc12aug + In Collection: deeplabv3plus + Metadata: + backbone: R-50-D8 + crop size: (512,512) + lr schd: 20000 + inference time (ms/im): + - value: 47.62 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,512) + Training Memory (GB): 7.6 + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 75.93 + mIoU(ms+flip): 77.5 + Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_512x512_20k_voc12aug.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_20k_voc12aug/deeplabv3plus_r50-d8_512x512_20k_voc12aug_20200617_102323-aad58ef1.pth +- Name: deeplabv3plus_r101-d8_512x512_20k_voc12aug + In Collection: deeplabv3plus + Metadata: + backbone: R-101-D8 + crop size: (512,512) + lr schd: 20000 + inference time (ms/im): + - value: 72.05 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,512) + Training Memory (GB): 11.0 + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 77.22 + mIoU(ms+flip): 78.59 + Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_512x512_20k_voc12aug.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_20k_voc12aug/deeplabv3plus_r101-d8_512x512_20k_voc12aug_20200617_102345-c7ff3d56.pth +- Name: deeplabv3plus_r50-d8_512x512_40k_voc12aug + In Collection: deeplabv3plus + Metadata: + backbone: R-50-D8 + crop size: (512,512) + lr schd: 40000 + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 76.81 + mIoU(ms+flip): 77.57 + Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_512x512_40k_voc12aug.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_40k_voc12aug/deeplabv3plus_r50-d8_512x512_40k_voc12aug_20200613_161759-e1b43aa9.pth +- Name: deeplabv3plus_r101-d8_512x512_40k_voc12aug + In Collection: deeplabv3plus + Metadata: + backbone: R-101-D8 + crop size: (512,512) + lr schd: 40000 + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 78.62 + mIoU(ms+flip): 79.53 + Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_512x512_40k_voc12aug.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_40k_voc12aug/deeplabv3plus_r101-d8_512x512_40k_voc12aug_20200613_205333-faf03387.pth +- Name: deeplabv3plus_r101-d8_480x480_40k_pascal_context + In Collection: deeplabv3plus + Metadata: + backbone: R-101-D8 + crop size: (480,480) + lr schd: 40000 + inference time (ms/im): + - value: 110.01 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (480,480) + Results: + - Task: Semantic Segmentation + Dataset: Pascal Context + Metrics: + mIoU: 47.3 + mIoU(ms+flip): 48.47 + Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_480x480_40k_pascal_context.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_40k_pascal_context/deeplabv3plus_r101-d8_480x480_40k_pascal_context_20200911_165459-d3c8a29e.pth +- Name: deeplabv3plus_r101-d8_480x480_80k_pascal_context + In Collection: deeplabv3plus + Metadata: + backbone: R-101-D8 + crop size: (480,480) + lr schd: 80000 + Results: + - Task: Semantic Segmentation + Dataset: Pascal Context + Metrics: + mIoU: 47.23 + mIoU(ms+flip): 48.26 + Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context/deeplabv3plus_r101-d8_480x480_80k_pascal_context_20200911_155322-145d3ee8.pth +- Name: deeplabv3plus_r101-d8_480x480_40k_pascal_context_59 + In Collection: deeplabv3plus + Metadata: + backbone: R-101-D8 + crop size: (480,480) + lr schd: 40000 + Results: + - Task: Semantic Segmentation + Dataset: Pascal Context 59 + Metrics: + mIoU: 52.86 + mIoU(ms+flip): 54.54 + Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_480x480_40k_pascal_context_59.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_40k_pascal_context_59/deeplabv3plus_r101-d8_480x480_40k_pascal_context_59_20210416_111233-ed937f15.pth +- Name: deeplabv3plus_r101-d8_480x480_80k_pascal_context_59 + In Collection: deeplabv3plus + Metadata: + backbone: R-101-D8 + crop size: (480,480) + lr schd: 80000 + Results: + - Task: Semantic Segmentation + Dataset: Pascal Context 59 + Metrics: + mIoU: 53.2 + mIoU(ms+flip): 54.67 + Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context_59.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context_59/deeplabv3plus_r101-d8_480x480_80k_pascal_context_59_20210416_111127-7ca0331d.pth +- Name: deeplabv3plus_r18-d8_512x512_80k_loveda + In Collection: deeplabv3plus + Metadata: + backbone: R-18-D8 + crop size: (512,512) + lr schd: 80000 + inference time (ms/im): + - value: 39.11 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,512) + Training Memory (GB): 1.93 + Results: + - Task: Semantic Segmentation + Dataset: LoveDA + Metrics: + mIoU: 50.28 + mIoU(ms+flip): 50.47 + Config: configs/deeplabv3plus/deeplabv3plus_r18-d8_512x512_80k_loveda.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_512x512_80k_loveda/deeplabv3plus_r18-d8_512x512_80k_loveda_20211104_132800-ce0fa0ca.pth +- Name: deeplabv3plus_r50-d8_512x512_80k_loveda + In Collection: deeplabv3plus + Metadata: + backbone: R-50-D8 + crop size: (512,512) + lr schd: 80000 + inference time (ms/im): + - value: 166.67 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,512) + Training Memory (GB): 7.37 + Results: + - Task: Semantic Segmentation + Dataset: LoveDA + Metrics: + mIoU: 50.99 + mIoU(ms+flip): 50.65 + Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_loveda.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_loveda/deeplabv3plus_r50-d8_512x512_80k_loveda_20211105_080442-f0720392.pth +- Name: deeplabv3plus_r101-d8_512x512_80k_loveda + In Collection: deeplabv3plus + Metadata: + backbone: R-101-D8 + crop size: (512,512) + lr schd: 80000 + inference time (ms/im): + - value: 230.95 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,512) + Training Memory (GB): 10.84 + Results: + - Task: Semantic Segmentation + Dataset: LoveDA + Metrics: + mIoU: 51.47 + mIoU(ms+flip): 51.32 + Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_loveda.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_loveda/deeplabv3plus_r101-d8_512x512_80k_loveda_20211105_110759-4c1f297e.pth