|
a |
|
b/configs/deeplabv3/deeplabv3.yml |
|
|
1 |
Collections: |
|
|
2 |
- Name: deeplabv3 |
|
|
3 |
Metadata: |
|
|
4 |
Training Data: |
|
|
5 |
- Cityscapes |
|
|
6 |
- ADE20K |
|
|
7 |
- Pascal VOC 2012 + Aug |
|
|
8 |
- Pascal Context |
|
|
9 |
- Pascal Context 59 |
|
|
10 |
- COCO-Stuff 10k |
|
|
11 |
- COCO-Stuff 164k |
|
|
12 |
Paper: |
|
|
13 |
URL: https://arxiv.org/abs/1706.05587 |
|
|
14 |
Title: Rethinking atrous convolution for semantic image segmentation |
|
|
15 |
README: configs/deeplabv3/README.md |
|
|
16 |
Code: |
|
|
17 |
URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/aspp_head.py#L54 |
|
|
18 |
Version: v0.17.0 |
|
|
19 |
Converted From: |
|
|
20 |
Code: https://github.com/tensorflow/models/tree/master/research/deeplab |
|
|
21 |
Models: |
|
|
22 |
- Name: deeplabv3_r50-d8_512x1024_40k_cityscapes |
|
|
23 |
In Collection: deeplabv3 |
|
|
24 |
Metadata: |
|
|
25 |
backbone: R-50-D8 |
|
|
26 |
crop size: (512,1024) |
|
|
27 |
lr schd: 40000 |
|
|
28 |
inference time (ms/im): |
|
|
29 |
- value: 389.11 |
|
|
30 |
hardware: V100 |
|
|
31 |
backend: PyTorch |
|
|
32 |
batch size: 1 |
|
|
33 |
mode: FP32 |
|
|
34 |
resolution: (512,1024) |
|
|
35 |
Training Memory (GB): 6.1 |
|
|
36 |
Results: |
|
|
37 |
- Task: Semantic Segmentation |
|
|
38 |
Dataset: Cityscapes |
|
|
39 |
Metrics: |
|
|
40 |
mIoU: 79.09 |
|
|
41 |
mIoU(ms+flip): 80.45 |
|
|
42 |
Config: configs/deeplabv3/deeplabv3_r50-d8_512x1024_40k_cityscapes.py |
|
|
43 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x1024_40k_cityscapes/deeplabv3_r50-d8_512x1024_40k_cityscapes_20200605_022449-acadc2f8.pth |
|
|
44 |
- Name: deeplabv3_r101-d8_512x1024_40k_cityscapes |
|
|
45 |
In Collection: deeplabv3 |
|
|
46 |
Metadata: |
|
|
47 |
backbone: R-101-D8 |
|
|
48 |
crop size: (512,1024) |
|
|
49 |
lr schd: 40000 |
|
|
50 |
inference time (ms/im): |
|
|
51 |
- value: 520.83 |
|
|
52 |
hardware: V100 |
|
|
53 |
backend: PyTorch |
|
|
54 |
batch size: 1 |
|
|
55 |
mode: FP32 |
|
|
56 |
resolution: (512,1024) |
|
|
57 |
Training Memory (GB): 9.6 |
|
|
58 |
Results: |
|
|
59 |
- Task: Semantic Segmentation |
|
|
60 |
Dataset: Cityscapes |
|
|
61 |
Metrics: |
|
|
62 |
mIoU: 77.12 |
|
|
63 |
mIoU(ms+flip): 79.61 |
|
|
64 |
Config: configs/deeplabv3/deeplabv3_r101-d8_512x1024_40k_cityscapes.py |
|
|
65 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x1024_40k_cityscapes/deeplabv3_r101-d8_512x1024_40k_cityscapes_20200605_012241-7fd3f799.pth |
|
|
66 |
- Name: deeplabv3_r50-d8_769x769_40k_cityscapes |
|
|
67 |
In Collection: deeplabv3 |
|
|
68 |
Metadata: |
|
|
69 |
backbone: R-50-D8 |
|
|
70 |
crop size: (769,769) |
|
|
71 |
lr schd: 40000 |
|
|
72 |
inference time (ms/im): |
|
|
73 |
- value: 900.9 |
|
|
74 |
hardware: V100 |
|
|
75 |
backend: PyTorch |
|
|
76 |
batch size: 1 |
|
|
77 |
mode: FP32 |
|
|
78 |
resolution: (769,769) |
|
|
79 |
Training Memory (GB): 6.9 |
|
|
80 |
Results: |
|
|
81 |
- Task: Semantic Segmentation |
|
|
82 |
Dataset: Cityscapes |
|
|
83 |
Metrics: |
|
|
84 |
mIoU: 78.58 |
|
|
85 |
mIoU(ms+flip): 79.89 |
|
|
86 |
Config: configs/deeplabv3/deeplabv3_r50-d8_769x769_40k_cityscapes.py |
|
|
87 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_769x769_40k_cityscapes/deeplabv3_r50-d8_769x769_40k_cityscapes_20200606_113723-7eda553c.pth |
|
|
88 |
- Name: deeplabv3_r101-d8_769x769_40k_cityscapes |
|
|
89 |
In Collection: deeplabv3 |
|
|
90 |
Metadata: |
|
|
91 |
backbone: R-101-D8 |
|
|
92 |
crop size: (769,769) |
|
|
93 |
lr schd: 40000 |
|
|
94 |
inference time (ms/im): |
|
|
95 |
- value: 1204.82 |
|
|
96 |
hardware: V100 |
|
|
97 |
backend: PyTorch |
|
|
98 |
batch size: 1 |
|
|
99 |
mode: FP32 |
|
|
100 |
resolution: (769,769) |
|
|
101 |
Training Memory (GB): 10.9 |
|
|
102 |
Results: |
|
|
103 |
- Task: Semantic Segmentation |
|
|
104 |
Dataset: Cityscapes |
|
|
105 |
Metrics: |
|
|
106 |
mIoU: 79.27 |
|
|
107 |
mIoU(ms+flip): 80.11 |
|
|
108 |
Config: configs/deeplabv3/deeplabv3_r101-d8_769x769_40k_cityscapes.py |
|
|
109 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_769x769_40k_cityscapes/deeplabv3_r101-d8_769x769_40k_cityscapes_20200606_113809-c64f889f.pth |
|
|
110 |
- Name: deeplabv3_r18-d8_512x1024_80k_cityscapes |
|
|
111 |
In Collection: deeplabv3 |
|
|
112 |
Metadata: |
|
|
113 |
backbone: R-18-D8 |
|
|
114 |
crop size: (512,1024) |
|
|
115 |
lr schd: 80000 |
|
|
116 |
inference time (ms/im): |
|
|
117 |
- value: 72.57 |
|
|
118 |
hardware: V100 |
|
|
119 |
backend: PyTorch |
|
|
120 |
batch size: 1 |
|
|
121 |
mode: FP32 |
|
|
122 |
resolution: (512,1024) |
|
|
123 |
Training Memory (GB): 1.7 |
|
|
124 |
Results: |
|
|
125 |
- Task: Semantic Segmentation |
|
|
126 |
Dataset: Cityscapes |
|
|
127 |
Metrics: |
|
|
128 |
mIoU: 76.7 |
|
|
129 |
mIoU(ms+flip): 78.27 |
|
|
130 |
Config: configs/deeplabv3/deeplabv3_r18-d8_512x1024_80k_cityscapes.py |
|
|
131 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18-d8_512x1024_80k_cityscapes/deeplabv3_r18-d8_512x1024_80k_cityscapes_20201225_021506-23dffbe2.pth |
|
|
132 |
- Name: deeplabv3_r50-d8_512x1024_80k_cityscapes |
|
|
133 |
In Collection: deeplabv3 |
|
|
134 |
Metadata: |
|
|
135 |
backbone: R-50-D8 |
|
|
136 |
crop size: (512,1024) |
|
|
137 |
lr schd: 80000 |
|
|
138 |
Results: |
|
|
139 |
- Task: Semantic Segmentation |
|
|
140 |
Dataset: Cityscapes |
|
|
141 |
Metrics: |
|
|
142 |
mIoU: 79.32 |
|
|
143 |
mIoU(ms+flip): 80.57 |
|
|
144 |
Config: configs/deeplabv3/deeplabv3_r50-d8_512x1024_80k_cityscapes.py |
|
|
145 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x1024_80k_cityscapes/deeplabv3_r50-d8_512x1024_80k_cityscapes_20200606_113404-b92cfdd4.pth |
|
|
146 |
- Name: deeplabv3_r101-d8_512x1024_80k_cityscapes |
|
|
147 |
In Collection: deeplabv3 |
|
|
148 |
Metadata: |
|
|
149 |
backbone: R-101-D8 |
|
|
150 |
crop size: (512,1024) |
|
|
151 |
lr schd: 80000 |
|
|
152 |
Results: |
|
|
153 |
- Task: Semantic Segmentation |
|
|
154 |
Dataset: Cityscapes |
|
|
155 |
Metrics: |
|
|
156 |
mIoU: 80.2 |
|
|
157 |
mIoU(ms+flip): 81.21 |
|
|
158 |
Config: configs/deeplabv3/deeplabv3_r101-d8_512x1024_80k_cityscapes.py |
|
|
159 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x1024_80k_cityscapes/deeplabv3_r101-d8_512x1024_80k_cityscapes_20200606_113503-9e428899.pth |
|
|
160 |
- Name: deeplabv3_r101-d8_fp16_512x1024_80k_cityscapes |
|
|
161 |
In Collection: deeplabv3 |
|
|
162 |
Metadata: |
|
|
163 |
backbone: R-101-D8 |
|
|
164 |
crop size: (512,1024) |
|
|
165 |
lr schd: 80000 |
|
|
166 |
inference time (ms/im): |
|
|
167 |
- value: 259.07 |
|
|
168 |
hardware: V100 |
|
|
169 |
backend: PyTorch |
|
|
170 |
batch size: 1 |
|
|
171 |
mode: FP16 |
|
|
172 |
resolution: (512,1024) |
|
|
173 |
Training Memory (GB): 5.75 |
|
|
174 |
Results: |
|
|
175 |
- Task: Semantic Segmentation |
|
|
176 |
Dataset: Cityscapes |
|
|
177 |
Metrics: |
|
|
178 |
mIoU: 80.48 |
|
|
179 |
Config: configs/deeplabv3/deeplabv3_r101-d8_fp16_512x1024_80k_cityscapes.py |
|
|
180 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_fp16_512x1024_80k_cityscapes/deeplabv3_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230920-774d9cec.pth |
|
|
181 |
- Name: deeplabv3_r18-d8_769x769_80k_cityscapes |
|
|
182 |
In Collection: deeplabv3 |
|
|
183 |
Metadata: |
|
|
184 |
backbone: R-18-D8 |
|
|
185 |
crop size: (769,769) |
|
|
186 |
lr schd: 80000 |
|
|
187 |
inference time (ms/im): |
|
|
188 |
- value: 180.18 |
|
|
189 |
hardware: V100 |
|
|
190 |
backend: PyTorch |
|
|
191 |
batch size: 1 |
|
|
192 |
mode: FP32 |
|
|
193 |
resolution: (769,769) |
|
|
194 |
Training Memory (GB): 1.9 |
|
|
195 |
Results: |
|
|
196 |
- Task: Semantic Segmentation |
|
|
197 |
Dataset: Cityscapes |
|
|
198 |
Metrics: |
|
|
199 |
mIoU: 76.6 |
|
|
200 |
mIoU(ms+flip): 78.26 |
|
|
201 |
Config: configs/deeplabv3/deeplabv3_r18-d8_769x769_80k_cityscapes.py |
|
|
202 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18-d8_769x769_80k_cityscapes/deeplabv3_r18-d8_769x769_80k_cityscapes_20201225_021506-6452126a.pth |
|
|
203 |
- Name: deeplabv3_r50-d8_769x769_80k_cityscapes |
|
|
204 |
In Collection: deeplabv3 |
|
|
205 |
Metadata: |
|
|
206 |
backbone: R-50-D8 |
|
|
207 |
crop size: (769,769) |
|
|
208 |
lr schd: 80000 |
|
|
209 |
Results: |
|
|
210 |
- Task: Semantic Segmentation |
|
|
211 |
Dataset: Cityscapes |
|
|
212 |
Metrics: |
|
|
213 |
mIoU: 79.89 |
|
|
214 |
mIoU(ms+flip): 81.06 |
|
|
215 |
Config: configs/deeplabv3/deeplabv3_r50-d8_769x769_80k_cityscapes.py |
|
|
216 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_769x769_80k_cityscapes/deeplabv3_r50-d8_769x769_80k_cityscapes_20200606_221338-788d6228.pth |
|
|
217 |
- Name: deeplabv3_r101-d8_769x769_80k_cityscapes |
|
|
218 |
In Collection: deeplabv3 |
|
|
219 |
Metadata: |
|
|
220 |
backbone: R-101-D8 |
|
|
221 |
crop size: (769,769) |
|
|
222 |
lr schd: 80000 |
|
|
223 |
Results: |
|
|
224 |
- Task: Semantic Segmentation |
|
|
225 |
Dataset: Cityscapes |
|
|
226 |
Metrics: |
|
|
227 |
mIoU: 79.67 |
|
|
228 |
mIoU(ms+flip): 80.81 |
|
|
229 |
Config: configs/deeplabv3/deeplabv3_r101-d8_769x769_80k_cityscapes.py |
|
|
230 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_769x769_80k_cityscapes/deeplabv3_r101-d8_769x769_80k_cityscapes_20200607_013353-60e95418.pth |
|
|
231 |
- Name: deeplabv3_r101-d16-mg124_512x1024_80k_cityscapes |
|
|
232 |
In Collection: deeplabv3 |
|
|
233 |
Metadata: |
|
|
234 |
backbone: R-101-D16-MG124 |
|
|
235 |
crop size: (512,1024) |
|
|
236 |
lr schd: 80000 |
|
|
237 |
Results: |
|
|
238 |
- Task: Semantic Segmentation |
|
|
239 |
Dataset: Cityscapes |
|
|
240 |
Metrics: |
|
|
241 |
mIoU: 78.36 |
|
|
242 |
mIoU(ms+flip): 79.84 |
|
|
243 |
Config: configs/deeplabv3/deeplabv3_r101-d16-mg124_512x1024_80k_cityscapes.py |
|
|
244 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d16-mg124_512x1024_80k_cityscapes/deeplabv3_r101-d16-mg124_512x1024_80k_cityscapes_20200908_005644-57bb8425.pth |
|
|
245 |
- Name: deeplabv3_r18b-d8_512x1024_80k_cityscapes |
|
|
246 |
In Collection: deeplabv3 |
|
|
247 |
Metadata: |
|
|
248 |
backbone: R-18b-D8 |
|
|
249 |
crop size: (512,1024) |
|
|
250 |
lr schd: 80000 |
|
|
251 |
inference time (ms/im): |
|
|
252 |
- value: 71.79 |
|
|
253 |
hardware: V100 |
|
|
254 |
backend: PyTorch |
|
|
255 |
batch size: 1 |
|
|
256 |
mode: FP32 |
|
|
257 |
resolution: (512,1024) |
|
|
258 |
Training Memory (GB): 1.6 |
|
|
259 |
Results: |
|
|
260 |
- Task: Semantic Segmentation |
|
|
261 |
Dataset: Cityscapes |
|
|
262 |
Metrics: |
|
|
263 |
mIoU: 76.26 |
|
|
264 |
mIoU(ms+flip): 77.88 |
|
|
265 |
Config: configs/deeplabv3/deeplabv3_r18b-d8_512x1024_80k_cityscapes.py |
|
|
266 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18b-d8_512x1024_80k_cityscapes/deeplabv3_r18b-d8_512x1024_80k_cityscapes_20201225_094144-46040cef.pth |
|
|
267 |
- Name: deeplabv3_r50b-d8_512x1024_80k_cityscapes |
|
|
268 |
In Collection: deeplabv3 |
|
|
269 |
Metadata: |
|
|
270 |
backbone: R-50b-D8 |
|
|
271 |
crop size: (512,1024) |
|
|
272 |
lr schd: 80000 |
|
|
273 |
inference time (ms/im): |
|
|
274 |
- value: 364.96 |
|
|
275 |
hardware: V100 |
|
|
276 |
backend: PyTorch |
|
|
277 |
batch size: 1 |
|
|
278 |
mode: FP32 |
|
|
279 |
resolution: (512,1024) |
|
|
280 |
Training Memory (GB): 6.0 |
|
|
281 |
Results: |
|
|
282 |
- Task: Semantic Segmentation |
|
|
283 |
Dataset: Cityscapes |
|
|
284 |
Metrics: |
|
|
285 |
mIoU: 79.63 |
|
|
286 |
mIoU(ms+flip): 80.98 |
|
|
287 |
Config: configs/deeplabv3/deeplabv3_r50b-d8_512x1024_80k_cityscapes.py |
|
|
288 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50b-d8_512x1024_80k_cityscapes/deeplabv3_r50b-d8_512x1024_80k_cityscapes_20201225_155148-ec368954.pth |
|
|
289 |
- Name: deeplabv3_r101b-d8_512x1024_80k_cityscapes |
|
|
290 |
In Collection: deeplabv3 |
|
|
291 |
Metadata: |
|
|
292 |
backbone: R-101b-D8 |
|
|
293 |
crop size: (512,1024) |
|
|
294 |
lr schd: 80000 |
|
|
295 |
inference time (ms/im): |
|
|
296 |
- value: 552.49 |
|
|
297 |
hardware: V100 |
|
|
298 |
backend: PyTorch |
|
|
299 |
batch size: 1 |
|
|
300 |
mode: FP32 |
|
|
301 |
resolution: (512,1024) |
|
|
302 |
Training Memory (GB): 9.5 |
|
|
303 |
Results: |
|
|
304 |
- Task: Semantic Segmentation |
|
|
305 |
Dataset: Cityscapes |
|
|
306 |
Metrics: |
|
|
307 |
mIoU: 80.01 |
|
|
308 |
mIoU(ms+flip): 81.21 |
|
|
309 |
Config: configs/deeplabv3/deeplabv3_r101b-d8_512x1024_80k_cityscapes.py |
|
|
310 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101b-d8_512x1024_80k_cityscapes/deeplabv3_r101b-d8_512x1024_80k_cityscapes_20201226_171821-8fd49503.pth |
|
|
311 |
- Name: deeplabv3_r18b-d8_769x769_80k_cityscapes |
|
|
312 |
In Collection: deeplabv3 |
|
|
313 |
Metadata: |
|
|
314 |
backbone: R-18b-D8 |
|
|
315 |
crop size: (769,769) |
|
|
316 |
lr schd: 80000 |
|
|
317 |
inference time (ms/im): |
|
|
318 |
- value: 172.71 |
|
|
319 |
hardware: V100 |
|
|
320 |
backend: PyTorch |
|
|
321 |
batch size: 1 |
|
|
322 |
mode: FP32 |
|
|
323 |
resolution: (769,769) |
|
|
324 |
Training Memory (GB): 1.8 |
|
|
325 |
Results: |
|
|
326 |
- Task: Semantic Segmentation |
|
|
327 |
Dataset: Cityscapes |
|
|
328 |
Metrics: |
|
|
329 |
mIoU: 76.63 |
|
|
330 |
mIoU(ms+flip): 77.51 |
|
|
331 |
Config: configs/deeplabv3/deeplabv3_r18b-d8_769x769_80k_cityscapes.py |
|
|
332 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18b-d8_769x769_80k_cityscapes/deeplabv3_r18b-d8_769x769_80k_cityscapes_20201225_094144-fdc985d9.pth |
|
|
333 |
- Name: deeplabv3_r50b-d8_769x769_80k_cityscapes |
|
|
334 |
In Collection: deeplabv3 |
|
|
335 |
Metadata: |
|
|
336 |
backbone: R-50b-D8 |
|
|
337 |
crop size: (769,769) |
|
|
338 |
lr schd: 80000 |
|
|
339 |
inference time (ms/im): |
|
|
340 |
- value: 862.07 |
|
|
341 |
hardware: V100 |
|
|
342 |
backend: PyTorch |
|
|
343 |
batch size: 1 |
|
|
344 |
mode: FP32 |
|
|
345 |
resolution: (769,769) |
|
|
346 |
Training Memory (GB): 6.8 |
|
|
347 |
Results: |
|
|
348 |
- Task: Semantic Segmentation |
|
|
349 |
Dataset: Cityscapes |
|
|
350 |
Metrics: |
|
|
351 |
mIoU: 78.8 |
|
|
352 |
mIoU(ms+flip): 80.27 |
|
|
353 |
Config: configs/deeplabv3/deeplabv3_r50b-d8_769x769_80k_cityscapes.py |
|
|
354 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50b-d8_769x769_80k_cityscapes/deeplabv3_r50b-d8_769x769_80k_cityscapes_20201225_155404-87fb0cf4.pth |
|
|
355 |
- Name: deeplabv3_r101b-d8_769x769_80k_cityscapes |
|
|
356 |
In Collection: deeplabv3 |
|
|
357 |
Metadata: |
|
|
358 |
backbone: R-101b-D8 |
|
|
359 |
crop size: (769,769) |
|
|
360 |
lr schd: 80000 |
|
|
361 |
inference time (ms/im): |
|
|
362 |
- value: 1219.51 |
|
|
363 |
hardware: V100 |
|
|
364 |
backend: PyTorch |
|
|
365 |
batch size: 1 |
|
|
366 |
mode: FP32 |
|
|
367 |
resolution: (769,769) |
|
|
368 |
Training Memory (GB): 10.7 |
|
|
369 |
Results: |
|
|
370 |
- Task: Semantic Segmentation |
|
|
371 |
Dataset: Cityscapes |
|
|
372 |
Metrics: |
|
|
373 |
mIoU: 79.41 |
|
|
374 |
mIoU(ms+flip): 80.73 |
|
|
375 |
Config: configs/deeplabv3/deeplabv3_r101b-d8_769x769_80k_cityscapes.py |
|
|
376 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101b-d8_769x769_80k_cityscapes/deeplabv3_r101b-d8_769x769_80k_cityscapes_20201226_190843-9142ee57.pth |
|
|
377 |
- Name: deeplabv3_r50-d8_512x512_80k_ade20k |
|
|
378 |
In Collection: deeplabv3 |
|
|
379 |
Metadata: |
|
|
380 |
backbone: R-50-D8 |
|
|
381 |
crop size: (512,512) |
|
|
382 |
lr schd: 80000 |
|
|
383 |
inference time (ms/im): |
|
|
384 |
- value: 67.75 |
|
|
385 |
hardware: V100 |
|
|
386 |
backend: PyTorch |
|
|
387 |
batch size: 1 |
|
|
388 |
mode: FP32 |
|
|
389 |
resolution: (512,512) |
|
|
390 |
Training Memory (GB): 8.9 |
|
|
391 |
Results: |
|
|
392 |
- Task: Semantic Segmentation |
|
|
393 |
Dataset: ADE20K |
|
|
394 |
Metrics: |
|
|
395 |
mIoU: 42.42 |
|
|
396 |
mIoU(ms+flip): 43.28 |
|
|
397 |
Config: configs/deeplabv3/deeplabv3_r50-d8_512x512_80k_ade20k.py |
|
|
398 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_80k_ade20k/deeplabv3_r50-d8_512x512_80k_ade20k_20200614_185028-0bb3f844.pth |
|
|
399 |
- Name: deeplabv3_r101-d8_512x512_80k_ade20k |
|
|
400 |
In Collection: deeplabv3 |
|
|
401 |
Metadata: |
|
|
402 |
backbone: R-101-D8 |
|
|
403 |
crop size: (512,512) |
|
|
404 |
lr schd: 80000 |
|
|
405 |
inference time (ms/im): |
|
|
406 |
- value: 98.62 |
|
|
407 |
hardware: V100 |
|
|
408 |
backend: PyTorch |
|
|
409 |
batch size: 1 |
|
|
410 |
mode: FP32 |
|
|
411 |
resolution: (512,512) |
|
|
412 |
Training Memory (GB): 12.4 |
|
|
413 |
Results: |
|
|
414 |
- Task: Semantic Segmentation |
|
|
415 |
Dataset: ADE20K |
|
|
416 |
Metrics: |
|
|
417 |
mIoU: 44.08 |
|
|
418 |
mIoU(ms+flip): 45.19 |
|
|
419 |
Config: configs/deeplabv3/deeplabv3_r101-d8_512x512_80k_ade20k.py |
|
|
420 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_80k_ade20k/deeplabv3_r101-d8_512x512_80k_ade20k_20200615_021256-d89c7fa4.pth |
|
|
421 |
- Name: deeplabv3_r50-d8_512x512_160k_ade20k |
|
|
422 |
In Collection: deeplabv3 |
|
|
423 |
Metadata: |
|
|
424 |
backbone: R-50-D8 |
|
|
425 |
crop size: (512,512) |
|
|
426 |
lr schd: 160000 |
|
|
427 |
Results: |
|
|
428 |
- Task: Semantic Segmentation |
|
|
429 |
Dataset: ADE20K |
|
|
430 |
Metrics: |
|
|
431 |
mIoU: 42.66 |
|
|
432 |
mIoU(ms+flip): 44.09 |
|
|
433 |
Config: configs/deeplabv3/deeplabv3_r50-d8_512x512_160k_ade20k.py |
|
|
434 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_160k_ade20k/deeplabv3_r50-d8_512x512_160k_ade20k_20200615_123227-5d0ee427.pth |
|
|
435 |
- Name: deeplabv3_r101-d8_512x512_160k_ade20k |
|
|
436 |
In Collection: deeplabv3 |
|
|
437 |
Metadata: |
|
|
438 |
backbone: R-101-D8 |
|
|
439 |
crop size: (512,512) |
|
|
440 |
lr schd: 160000 |
|
|
441 |
Results: |
|
|
442 |
- Task: Semantic Segmentation |
|
|
443 |
Dataset: ADE20K |
|
|
444 |
Metrics: |
|
|
445 |
mIoU: 45.0 |
|
|
446 |
mIoU(ms+flip): 46.66 |
|
|
447 |
Config: configs/deeplabv3/deeplabv3_r101-d8_512x512_160k_ade20k.py |
|
|
448 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_160k_ade20k/deeplabv3_r101-d8_512x512_160k_ade20k_20200615_105816-b1f72b3b.pth |
|
|
449 |
- Name: deeplabv3_r50-d8_512x512_20k_voc12aug |
|
|
450 |
In Collection: deeplabv3 |
|
|
451 |
Metadata: |
|
|
452 |
backbone: R-50-D8 |
|
|
453 |
crop size: (512,512) |
|
|
454 |
lr schd: 20000 |
|
|
455 |
inference time (ms/im): |
|
|
456 |
- value: 72.05 |
|
|
457 |
hardware: V100 |
|
|
458 |
backend: PyTorch |
|
|
459 |
batch size: 1 |
|
|
460 |
mode: FP32 |
|
|
461 |
resolution: (512,512) |
|
|
462 |
Training Memory (GB): 6.1 |
|
|
463 |
Results: |
|
|
464 |
- Task: Semantic Segmentation |
|
|
465 |
Dataset: Pascal VOC 2012 + Aug |
|
|
466 |
Metrics: |
|
|
467 |
mIoU: 76.17 |
|
|
468 |
mIoU(ms+flip): 77.42 |
|
|
469 |
Config: configs/deeplabv3/deeplabv3_r50-d8_512x512_20k_voc12aug.py |
|
|
470 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_20k_voc12aug/deeplabv3_r50-d8_512x512_20k_voc12aug_20200617_010906-596905ef.pth |
|
|
471 |
- Name: deeplabv3_r101-d8_512x512_20k_voc12aug |
|
|
472 |
In Collection: deeplabv3 |
|
|
473 |
Metadata: |
|
|
474 |
backbone: R-101-D8 |
|
|
475 |
crop size: (512,512) |
|
|
476 |
lr schd: 20000 |
|
|
477 |
inference time (ms/im): |
|
|
478 |
- value: 101.94 |
|
|
479 |
hardware: V100 |
|
|
480 |
backend: PyTorch |
|
|
481 |
batch size: 1 |
|
|
482 |
mode: FP32 |
|
|
483 |
resolution: (512,512) |
|
|
484 |
Training Memory (GB): 9.6 |
|
|
485 |
Results: |
|
|
486 |
- Task: Semantic Segmentation |
|
|
487 |
Dataset: Pascal VOC 2012 + Aug |
|
|
488 |
Metrics: |
|
|
489 |
mIoU: 78.7 |
|
|
490 |
mIoU(ms+flip): 79.95 |
|
|
491 |
Config: configs/deeplabv3/deeplabv3_r101-d8_512x512_20k_voc12aug.py |
|
|
492 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_20k_voc12aug/deeplabv3_r101-d8_512x512_20k_voc12aug_20200617_010932-8d13832f.pth |
|
|
493 |
- Name: deeplabv3_r50-d8_512x512_40k_voc12aug |
|
|
494 |
In Collection: deeplabv3 |
|
|
495 |
Metadata: |
|
|
496 |
backbone: R-50-D8 |
|
|
497 |
crop size: (512,512) |
|
|
498 |
lr schd: 40000 |
|
|
499 |
Results: |
|
|
500 |
- Task: Semantic Segmentation |
|
|
501 |
Dataset: Pascal VOC 2012 + Aug |
|
|
502 |
Metrics: |
|
|
503 |
mIoU: 77.68 |
|
|
504 |
mIoU(ms+flip): 78.78 |
|
|
505 |
Config: configs/deeplabv3/deeplabv3_r50-d8_512x512_40k_voc12aug.py |
|
|
506 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_40k_voc12aug/deeplabv3_r50-d8_512x512_40k_voc12aug_20200613_161546-2ae96e7e.pth |
|
|
507 |
- Name: deeplabv3_r101-d8_512x512_40k_voc12aug |
|
|
508 |
In Collection: deeplabv3 |
|
|
509 |
Metadata: |
|
|
510 |
backbone: R-101-D8 |
|
|
511 |
crop size: (512,512) |
|
|
512 |
lr schd: 40000 |
|
|
513 |
Results: |
|
|
514 |
- Task: Semantic Segmentation |
|
|
515 |
Dataset: Pascal VOC 2012 + Aug |
|
|
516 |
Metrics: |
|
|
517 |
mIoU: 77.92 |
|
|
518 |
mIoU(ms+flip): 79.18 |
|
|
519 |
Config: configs/deeplabv3/deeplabv3_r101-d8_512x512_40k_voc12aug.py |
|
|
520 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_40k_voc12aug/deeplabv3_r101-d8_512x512_40k_voc12aug_20200613_161432-0017d784.pth |
|
|
521 |
- Name: deeplabv3_r101-d8_480x480_40k_pascal_context |
|
|
522 |
In Collection: deeplabv3 |
|
|
523 |
Metadata: |
|
|
524 |
backbone: R-101-D8 |
|
|
525 |
crop size: (480,480) |
|
|
526 |
lr schd: 40000 |
|
|
527 |
inference time (ms/im): |
|
|
528 |
- value: 141.04 |
|
|
529 |
hardware: V100 |
|
|
530 |
backend: PyTorch |
|
|
531 |
batch size: 1 |
|
|
532 |
mode: FP32 |
|
|
533 |
resolution: (480,480) |
|
|
534 |
Training Memory (GB): 9.2 |
|
|
535 |
Results: |
|
|
536 |
- Task: Semantic Segmentation |
|
|
537 |
Dataset: Pascal Context |
|
|
538 |
Metrics: |
|
|
539 |
mIoU: 46.55 |
|
|
540 |
mIoU(ms+flip): 47.81 |
|
|
541 |
Config: configs/deeplabv3/deeplabv3_r101-d8_480x480_40k_pascal_context.py |
|
|
542 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_40k_pascal_context/deeplabv3_r101-d8_480x480_40k_pascal_context_20200911_204118-1aa27336.pth |
|
|
543 |
- Name: deeplabv3_r101-d8_480x480_80k_pascal_context |
|
|
544 |
In Collection: deeplabv3 |
|
|
545 |
Metadata: |
|
|
546 |
backbone: R-101-D8 |
|
|
547 |
crop size: (480,480) |
|
|
548 |
lr schd: 80000 |
|
|
549 |
Results: |
|
|
550 |
- Task: Semantic Segmentation |
|
|
551 |
Dataset: Pascal Context |
|
|
552 |
Metrics: |
|
|
553 |
mIoU: 46.42 |
|
|
554 |
mIoU(ms+flip): 47.53 |
|
|
555 |
Config: configs/deeplabv3/deeplabv3_r101-d8_480x480_80k_pascal_context.py |
|
|
556 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_80k_pascal_context/deeplabv3_r101-d8_480x480_80k_pascal_context_20200911_170155-2a21fff3.pth |
|
|
557 |
- Name: deeplabv3_r101-d8_480x480_40k_pascal_context_59 |
|
|
558 |
In Collection: deeplabv3 |
|
|
559 |
Metadata: |
|
|
560 |
backbone: R-101-D8 |
|
|
561 |
crop size: (480,480) |
|
|
562 |
lr schd: 40000 |
|
|
563 |
Results: |
|
|
564 |
- Task: Semantic Segmentation |
|
|
565 |
Dataset: Pascal Context 59 |
|
|
566 |
Metrics: |
|
|
567 |
mIoU: 52.61 |
|
|
568 |
mIoU(ms+flip): 54.28 |
|
|
569 |
Config: configs/deeplabv3/deeplabv3_r101-d8_480x480_40k_pascal_context_59.py |
|
|
570 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_40k_pascal_context_59/deeplabv3_r101-d8_480x480_40k_pascal_context_59_20210416_110332-cb08ea46.pth |
|
|
571 |
- Name: deeplabv3_r101-d8_480x480_80k_pascal_context_59 |
|
|
572 |
In Collection: deeplabv3 |
|
|
573 |
Metadata: |
|
|
574 |
backbone: R-101-D8 |
|
|
575 |
crop size: (480,480) |
|
|
576 |
lr schd: 80000 |
|
|
577 |
Results: |
|
|
578 |
- Task: Semantic Segmentation |
|
|
579 |
Dataset: Pascal Context 59 |
|
|
580 |
Metrics: |
|
|
581 |
mIoU: 52.46 |
|
|
582 |
mIoU(ms+flip): 54.09 |
|
|
583 |
Config: configs/deeplabv3/deeplabv3_r101-d8_480x480_80k_pascal_context_59.py |
|
|
584 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_80k_pascal_context_59/deeplabv3_r101-d8_480x480_80k_pascal_context_59_20210416_113002-26303993.pth |
|
|
585 |
- Name: deeplabv3_r50-d8_512x512_4x4_20k_coco-stuff10k |
|
|
586 |
In Collection: deeplabv3 |
|
|
587 |
Metadata: |
|
|
588 |
backbone: R-50-D8 |
|
|
589 |
crop size: (512,512) |
|
|
590 |
lr schd: 20000 |
|
|
591 |
inference time (ms/im): |
|
|
592 |
- value: 92.59 |
|
|
593 |
hardware: V100 |
|
|
594 |
backend: PyTorch |
|
|
595 |
batch size: 1 |
|
|
596 |
mode: FP32 |
|
|
597 |
resolution: (512,512) |
|
|
598 |
Training Memory (GB): 9.6 |
|
|
599 |
Results: |
|
|
600 |
- Task: Semantic Segmentation |
|
|
601 |
Dataset: COCO-Stuff 10k |
|
|
602 |
Metrics: |
|
|
603 |
mIoU: 34.66 |
|
|
604 |
mIoU(ms+flip): 36.08 |
|
|
605 |
Config: configs/deeplabv3/deeplabv3_r50-d8_512x512_4x4_20k_coco-stuff10k.py |
|
|
606 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_20k_coco-stuff10k/deeplabv3_r50-d8_512x512_4x4_20k_coco-stuff10k_20210821_043025-b35f789d.pth |
|
|
607 |
- Name: deeplabv3_r101-d8_512x512_4x4_20k_coco-stuff10k |
|
|
608 |
In Collection: deeplabv3 |
|
|
609 |
Metadata: |
|
|
610 |
backbone: R-101-D8 |
|
|
611 |
crop size: (512,512) |
|
|
612 |
lr schd: 20000 |
|
|
613 |
inference time (ms/im): |
|
|
614 |
- value: 114.94 |
|
|
615 |
hardware: V100 |
|
|
616 |
backend: PyTorch |
|
|
617 |
batch size: 1 |
|
|
618 |
mode: FP32 |
|
|
619 |
resolution: (512,512) |
|
|
620 |
Training Memory (GB): 13.2 |
|
|
621 |
Results: |
|
|
622 |
- Task: Semantic Segmentation |
|
|
623 |
Dataset: COCO-Stuff 10k |
|
|
624 |
Metrics: |
|
|
625 |
mIoU: 37.3 |
|
|
626 |
mIoU(ms+flip): 38.42 |
|
|
627 |
Config: configs/deeplabv3/deeplabv3_r101-d8_512x512_4x4_20k_coco-stuff10k.py |
|
|
628 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_20k_coco-stuff10k/deeplabv3_r101-d8_512x512_4x4_20k_coco-stuff10k_20210821_043025-c49752cb.pth |
|
|
629 |
- Name: deeplabv3_r50-d8_512x512_4x4_40k_coco-stuff10k |
|
|
630 |
In Collection: deeplabv3 |
|
|
631 |
Metadata: |
|
|
632 |
backbone: R-50-D8 |
|
|
633 |
crop size: (512,512) |
|
|
634 |
lr schd: 40000 |
|
|
635 |
Results: |
|
|
636 |
- Task: Semantic Segmentation |
|
|
637 |
Dataset: COCO-Stuff 10k |
|
|
638 |
Metrics: |
|
|
639 |
mIoU: 35.73 |
|
|
640 |
mIoU(ms+flip): 37.09 |
|
|
641 |
Config: configs/deeplabv3/deeplabv3_r50-d8_512x512_4x4_40k_coco-stuff10k.py |
|
|
642 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_40k_coco-stuff10k/deeplabv3_r50-d8_512x512_4x4_40k_coco-stuff10k_20210821_043305-dc76f3ff.pth |
|
|
643 |
- Name: deeplabv3_r101-d8_512x512_4x4_40k_coco-stuff10k |
|
|
644 |
In Collection: deeplabv3 |
|
|
645 |
Metadata: |
|
|
646 |
backbone: R-101-D8 |
|
|
647 |
crop size: (512,512) |
|
|
648 |
lr schd: 40000 |
|
|
649 |
Results: |
|
|
650 |
- Task: Semantic Segmentation |
|
|
651 |
Dataset: COCO-Stuff 10k |
|
|
652 |
Metrics: |
|
|
653 |
mIoU: 37.81 |
|
|
654 |
mIoU(ms+flip): 38.8 |
|
|
655 |
Config: configs/deeplabv3/deeplabv3_r101-d8_512x512_4x4_40k_coco-stuff10k.py |
|
|
656 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_40k_coco-stuff10k/deeplabv3_r101-d8_512x512_4x4_40k_coco-stuff10k_20210821_043305-636cb433.pth |
|
|
657 |
- Name: deeplabv3_r50-d8_512x512_4x4_80k_coco-stuff164k |
|
|
658 |
In Collection: deeplabv3 |
|
|
659 |
Metadata: |
|
|
660 |
backbone: R-50-D8 |
|
|
661 |
crop size: (512,512) |
|
|
662 |
lr schd: 80000 |
|
|
663 |
inference time (ms/im): |
|
|
664 |
- value: 92.59 |
|
|
665 |
hardware: V100 |
|
|
666 |
backend: PyTorch |
|
|
667 |
batch size: 1 |
|
|
668 |
mode: FP32 |
|
|
669 |
resolution: (512,512) |
|
|
670 |
Training Memory (GB): 9.6 |
|
|
671 |
Results: |
|
|
672 |
- Task: Semantic Segmentation |
|
|
673 |
Dataset: COCO-Stuff 164k |
|
|
674 |
Metrics: |
|
|
675 |
mIoU: 39.38 |
|
|
676 |
mIoU(ms+flip): 40.03 |
|
|
677 |
Config: configs/deeplabv3/deeplabv3_r50-d8_512x512_4x4_80k_coco-stuff164k.py |
|
|
678 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_80k_coco-stuff164k/deeplabv3_r50-d8_512x512_4x4_80k_coco-stuff164k_20210709_163016-88675c24.pth |
|
|
679 |
- Name: deeplabv3_r101-d8_512x512_4x4_80k_coco-stuff164k |
|
|
680 |
In Collection: deeplabv3 |
|
|
681 |
Metadata: |
|
|
682 |
backbone: R-101-D8 |
|
|
683 |
crop size: (512,512) |
|
|
684 |
lr schd: 80000 |
|
|
685 |
inference time (ms/im): |
|
|
686 |
- value: 114.94 |
|
|
687 |
hardware: V100 |
|
|
688 |
backend: PyTorch |
|
|
689 |
batch size: 1 |
|
|
690 |
mode: FP32 |
|
|
691 |
resolution: (512,512) |
|
|
692 |
Training Memory (GB): 13.2 |
|
|
693 |
Results: |
|
|
694 |
- Task: Semantic Segmentation |
|
|
695 |
Dataset: COCO-Stuff 164k |
|
|
696 |
Metrics: |
|
|
697 |
mIoU: 40.87 |
|
|
698 |
mIoU(ms+flip): 41.5 |
|
|
699 |
Config: configs/deeplabv3/deeplabv3_r101-d8_512x512_4x4_80k_coco-stuff164k.py |
|
|
700 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_80k_coco-stuff164k/deeplabv3_r101-d8_512x512_4x4_80k_coco-stuff164k_20210709_201252-13600dc2.pth |
|
|
701 |
- Name: deeplabv3_r50-d8_512x512_4x4_160k_coco-stuff164k |
|
|
702 |
In Collection: deeplabv3 |
|
|
703 |
Metadata: |
|
|
704 |
backbone: R-50-D8 |
|
|
705 |
crop size: (512,512) |
|
|
706 |
lr schd: 160000 |
|
|
707 |
Results: |
|
|
708 |
- Task: Semantic Segmentation |
|
|
709 |
Dataset: COCO-Stuff 164k |
|
|
710 |
Metrics: |
|
|
711 |
mIoU: 41.09 |
|
|
712 |
mIoU(ms+flip): 41.69 |
|
|
713 |
Config: configs/deeplabv3/deeplabv3_r50-d8_512x512_4x4_160k_coco-stuff164k.py |
|
|
714 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_160k_coco-stuff164k/deeplabv3_r50-d8_512x512_4x4_160k_coco-stuff164k_20210709_163016-49f2812b.pth |
|
|
715 |
- Name: deeplabv3_r101-d8_512x512_4x4_160k_coco-stuff164k |
|
|
716 |
In Collection: deeplabv3 |
|
|
717 |
Metadata: |
|
|
718 |
backbone: R-101-D8 |
|
|
719 |
crop size: (512,512) |
|
|
720 |
lr schd: 160000 |
|
|
721 |
Results: |
|
|
722 |
- Task: Semantic Segmentation |
|
|
723 |
Dataset: COCO-Stuff 164k |
|
|
724 |
Metrics: |
|
|
725 |
mIoU: 41.82 |
|
|
726 |
mIoU(ms+flip): 42.49 |
|
|
727 |
Config: configs/deeplabv3/deeplabv3_r101-d8_512x512_4x4_160k_coco-stuff164k.py |
|
|
728 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_160k_coco-stuff164k/deeplabv3_r101-d8_512x512_4x4_160k_coco-stuff164k_20210709_155402-f035acfd.pth |
|
|
729 |
- Name: deeplabv3_r50-d8_512x512_4x4_320k_coco-stuff164k |
|
|
730 |
In Collection: deeplabv3 |
|
|
731 |
Metadata: |
|
|
732 |
backbone: R-50-D8 |
|
|
733 |
crop size: (512,512) |
|
|
734 |
lr schd: 320000 |
|
|
735 |
Results: |
|
|
736 |
- Task: Semantic Segmentation |
|
|
737 |
Dataset: COCO-Stuff 164k |
|
|
738 |
Metrics: |
|
|
739 |
mIoU: 41.37 |
|
|
740 |
mIoU(ms+flip): 42.22 |
|
|
741 |
Config: configs/deeplabv3/deeplabv3_r50-d8_512x512_4x4_320k_coco-stuff164k.py |
|
|
742 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_320k_coco-stuff164k/deeplabv3_r50-d8_512x512_4x4_320k_coco-stuff164k_20210709_155403-51b21115.pth |
|
|
743 |
- Name: deeplabv3_r101-d8_512x512_4x4_320k_coco-stuff164k |
|
|
744 |
In Collection: deeplabv3 |
|
|
745 |
Metadata: |
|
|
746 |
backbone: R-101-D8 |
|
|
747 |
crop size: (512,512) |
|
|
748 |
lr schd: 320000 |
|
|
749 |
Results: |
|
|
750 |
- Task: Semantic Segmentation |
|
|
751 |
Dataset: COCO-Stuff 164k |
|
|
752 |
Metrics: |
|
|
753 |
mIoU: 42.61 |
|
|
754 |
mIoU(ms+flip): 43.42 |
|
|
755 |
Config: configs/deeplabv3/deeplabv3_r101-d8_512x512_4x4_320k_coco-stuff164k.py |
|
|
756 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_320k_coco-stuff164k/deeplabv3_r101-d8_512x512_4x4_320k_coco-stuff164k_20210709_155402-3cbca14d.pth |