Switch to unified view

a b/configs/deeplabv3/deeplabv3.yml
1
Collections:
2
- Name: deeplabv3
3
  Metadata:
4
    Training Data:
5
    - Cityscapes
6
    - ADE20K
7
    - Pascal VOC 2012 + Aug
8
    - Pascal Context
9
    - Pascal Context 59
10
    - COCO-Stuff 10k
11
    - COCO-Stuff 164k
12
  Paper:
13
    URL: https://arxiv.org/abs/1706.05587
14
    Title: Rethinking atrous convolution for semantic image segmentation
15
  README: configs/deeplabv3/README.md
16
  Code:
17
    URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/aspp_head.py#L54
18
    Version: v0.17.0
19
  Converted From:
20
    Code: https://github.com/tensorflow/models/tree/master/research/deeplab
21
Models:
22
- Name: deeplabv3_r50-d8_512x1024_40k_cityscapes
23
  In Collection: deeplabv3
24
  Metadata:
25
    backbone: R-50-D8
26
    crop size: (512,1024)
27
    lr schd: 40000
28
    inference time (ms/im):
29
    - value: 389.11
30
      hardware: V100
31
      backend: PyTorch
32
      batch size: 1
33
      mode: FP32
34
      resolution: (512,1024)
35
    Training Memory (GB): 6.1
36
  Results:
37
  - Task: Semantic Segmentation
38
    Dataset: Cityscapes
39
    Metrics:
40
      mIoU: 79.09
41
      mIoU(ms+flip): 80.45
42
  Config: configs/deeplabv3/deeplabv3_r50-d8_512x1024_40k_cityscapes.py
43
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x1024_40k_cityscapes/deeplabv3_r50-d8_512x1024_40k_cityscapes_20200605_022449-acadc2f8.pth
44
- Name: deeplabv3_r101-d8_512x1024_40k_cityscapes
45
  In Collection: deeplabv3
46
  Metadata:
47
    backbone: R-101-D8
48
    crop size: (512,1024)
49
    lr schd: 40000
50
    inference time (ms/im):
51
    - value: 520.83
52
      hardware: V100
53
      backend: PyTorch
54
      batch size: 1
55
      mode: FP32
56
      resolution: (512,1024)
57
    Training Memory (GB): 9.6
58
  Results:
59
  - Task: Semantic Segmentation
60
    Dataset: Cityscapes
61
    Metrics:
62
      mIoU: 77.12
63
      mIoU(ms+flip): 79.61
64
  Config: configs/deeplabv3/deeplabv3_r101-d8_512x1024_40k_cityscapes.py
65
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x1024_40k_cityscapes/deeplabv3_r101-d8_512x1024_40k_cityscapes_20200605_012241-7fd3f799.pth
66
- Name: deeplabv3_r50-d8_769x769_40k_cityscapes
67
  In Collection: deeplabv3
68
  Metadata:
69
    backbone: R-50-D8
70
    crop size: (769,769)
71
    lr schd: 40000
72
    inference time (ms/im):
73
    - value: 900.9
74
      hardware: V100
75
      backend: PyTorch
76
      batch size: 1
77
      mode: FP32
78
      resolution: (769,769)
79
    Training Memory (GB): 6.9
80
  Results:
81
  - Task: Semantic Segmentation
82
    Dataset: Cityscapes
83
    Metrics:
84
      mIoU: 78.58
85
      mIoU(ms+flip): 79.89
86
  Config: configs/deeplabv3/deeplabv3_r50-d8_769x769_40k_cityscapes.py
87
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_769x769_40k_cityscapes/deeplabv3_r50-d8_769x769_40k_cityscapes_20200606_113723-7eda553c.pth
88
- Name: deeplabv3_r101-d8_769x769_40k_cityscapes
89
  In Collection: deeplabv3
90
  Metadata:
91
    backbone: R-101-D8
92
    crop size: (769,769)
93
    lr schd: 40000
94
    inference time (ms/im):
95
    - value: 1204.82
96
      hardware: V100
97
      backend: PyTorch
98
      batch size: 1
99
      mode: FP32
100
      resolution: (769,769)
101
    Training Memory (GB): 10.9
102
  Results:
103
  - Task: Semantic Segmentation
104
    Dataset: Cityscapes
105
    Metrics:
106
      mIoU: 79.27
107
      mIoU(ms+flip): 80.11
108
  Config: configs/deeplabv3/deeplabv3_r101-d8_769x769_40k_cityscapes.py
109
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_769x769_40k_cityscapes/deeplabv3_r101-d8_769x769_40k_cityscapes_20200606_113809-c64f889f.pth
110
- Name: deeplabv3_r18-d8_512x1024_80k_cityscapes
111
  In Collection: deeplabv3
112
  Metadata:
113
    backbone: R-18-D8
114
    crop size: (512,1024)
115
    lr schd: 80000
116
    inference time (ms/im):
117
    - value: 72.57
118
      hardware: V100
119
      backend: PyTorch
120
      batch size: 1
121
      mode: FP32
122
      resolution: (512,1024)
123
    Training Memory (GB): 1.7
124
  Results:
125
  - Task: Semantic Segmentation
126
    Dataset: Cityscapes
127
    Metrics:
128
      mIoU: 76.7
129
      mIoU(ms+flip): 78.27
130
  Config: configs/deeplabv3/deeplabv3_r18-d8_512x1024_80k_cityscapes.py
131
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18-d8_512x1024_80k_cityscapes/deeplabv3_r18-d8_512x1024_80k_cityscapes_20201225_021506-23dffbe2.pth
132
- Name: deeplabv3_r50-d8_512x1024_80k_cityscapes
133
  In Collection: deeplabv3
134
  Metadata:
135
    backbone: R-50-D8
136
    crop size: (512,1024)
137
    lr schd: 80000
138
  Results:
139
  - Task: Semantic Segmentation
140
    Dataset: Cityscapes
141
    Metrics:
142
      mIoU: 79.32
143
      mIoU(ms+flip): 80.57
144
  Config: configs/deeplabv3/deeplabv3_r50-d8_512x1024_80k_cityscapes.py
145
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x1024_80k_cityscapes/deeplabv3_r50-d8_512x1024_80k_cityscapes_20200606_113404-b92cfdd4.pth
146
- Name: deeplabv3_r101-d8_512x1024_80k_cityscapes
147
  In Collection: deeplabv3
148
  Metadata:
149
    backbone: R-101-D8
150
    crop size: (512,1024)
151
    lr schd: 80000
152
  Results:
153
  - Task: Semantic Segmentation
154
    Dataset: Cityscapes
155
    Metrics:
156
      mIoU: 80.2
157
      mIoU(ms+flip): 81.21
158
  Config: configs/deeplabv3/deeplabv3_r101-d8_512x1024_80k_cityscapes.py
159
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x1024_80k_cityscapes/deeplabv3_r101-d8_512x1024_80k_cityscapes_20200606_113503-9e428899.pth
160
- Name: deeplabv3_r101-d8_fp16_512x1024_80k_cityscapes
161
  In Collection: deeplabv3
162
  Metadata:
163
    backbone: R-101-D8
164
    crop size: (512,1024)
165
    lr schd: 80000
166
    inference time (ms/im):
167
    - value: 259.07
168
      hardware: V100
169
      backend: PyTorch
170
      batch size: 1
171
      mode: FP16
172
      resolution: (512,1024)
173
    Training Memory (GB): 5.75
174
  Results:
175
  - Task: Semantic Segmentation
176
    Dataset: Cityscapes
177
    Metrics:
178
      mIoU: 80.48
179
  Config: configs/deeplabv3/deeplabv3_r101-d8_fp16_512x1024_80k_cityscapes.py
180
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_fp16_512x1024_80k_cityscapes/deeplabv3_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230920-774d9cec.pth
181
- Name: deeplabv3_r18-d8_769x769_80k_cityscapes
182
  In Collection: deeplabv3
183
  Metadata:
184
    backbone: R-18-D8
185
    crop size: (769,769)
186
    lr schd: 80000
187
    inference time (ms/im):
188
    - value: 180.18
189
      hardware: V100
190
      backend: PyTorch
191
      batch size: 1
192
      mode: FP32
193
      resolution: (769,769)
194
    Training Memory (GB): 1.9
195
  Results:
196
  - Task: Semantic Segmentation
197
    Dataset: Cityscapes
198
    Metrics:
199
      mIoU: 76.6
200
      mIoU(ms+flip): 78.26
201
  Config: configs/deeplabv3/deeplabv3_r18-d8_769x769_80k_cityscapes.py
202
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18-d8_769x769_80k_cityscapes/deeplabv3_r18-d8_769x769_80k_cityscapes_20201225_021506-6452126a.pth
203
- Name: deeplabv3_r50-d8_769x769_80k_cityscapes
204
  In Collection: deeplabv3
205
  Metadata:
206
    backbone: R-50-D8
207
    crop size: (769,769)
208
    lr schd: 80000
209
  Results:
210
  - Task: Semantic Segmentation
211
    Dataset: Cityscapes
212
    Metrics:
213
      mIoU: 79.89
214
      mIoU(ms+flip): 81.06
215
  Config: configs/deeplabv3/deeplabv3_r50-d8_769x769_80k_cityscapes.py
216
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_769x769_80k_cityscapes/deeplabv3_r50-d8_769x769_80k_cityscapes_20200606_221338-788d6228.pth
217
- Name: deeplabv3_r101-d8_769x769_80k_cityscapes
218
  In Collection: deeplabv3
219
  Metadata:
220
    backbone: R-101-D8
221
    crop size: (769,769)
222
    lr schd: 80000
223
  Results:
224
  - Task: Semantic Segmentation
225
    Dataset: Cityscapes
226
    Metrics:
227
      mIoU: 79.67
228
      mIoU(ms+flip): 80.81
229
  Config: configs/deeplabv3/deeplabv3_r101-d8_769x769_80k_cityscapes.py
230
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_769x769_80k_cityscapes/deeplabv3_r101-d8_769x769_80k_cityscapes_20200607_013353-60e95418.pth
231
- Name: deeplabv3_r101-d16-mg124_512x1024_80k_cityscapes
232
  In Collection: deeplabv3
233
  Metadata:
234
    backbone: R-101-D16-MG124
235
    crop size: (512,1024)
236
    lr schd: 80000
237
  Results:
238
  - Task: Semantic Segmentation
239
    Dataset: Cityscapes
240
    Metrics:
241
      mIoU: 78.36
242
      mIoU(ms+flip): 79.84
243
  Config: configs/deeplabv3/deeplabv3_r101-d16-mg124_512x1024_80k_cityscapes.py
244
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d16-mg124_512x1024_80k_cityscapes/deeplabv3_r101-d16-mg124_512x1024_80k_cityscapes_20200908_005644-57bb8425.pth
245
- Name: deeplabv3_r18b-d8_512x1024_80k_cityscapes
246
  In Collection: deeplabv3
247
  Metadata:
248
    backbone: R-18b-D8
249
    crop size: (512,1024)
250
    lr schd: 80000
251
    inference time (ms/im):
252
    - value: 71.79
253
      hardware: V100
254
      backend: PyTorch
255
      batch size: 1
256
      mode: FP32
257
      resolution: (512,1024)
258
    Training Memory (GB): 1.6
259
  Results:
260
  - Task: Semantic Segmentation
261
    Dataset: Cityscapes
262
    Metrics:
263
      mIoU: 76.26
264
      mIoU(ms+flip): 77.88
265
  Config: configs/deeplabv3/deeplabv3_r18b-d8_512x1024_80k_cityscapes.py
266
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18b-d8_512x1024_80k_cityscapes/deeplabv3_r18b-d8_512x1024_80k_cityscapes_20201225_094144-46040cef.pth
267
- Name: deeplabv3_r50b-d8_512x1024_80k_cityscapes
268
  In Collection: deeplabv3
269
  Metadata:
270
    backbone: R-50b-D8
271
    crop size: (512,1024)
272
    lr schd: 80000
273
    inference time (ms/im):
274
    - value: 364.96
275
      hardware: V100
276
      backend: PyTorch
277
      batch size: 1
278
      mode: FP32
279
      resolution: (512,1024)
280
    Training Memory (GB): 6.0
281
  Results:
282
  - Task: Semantic Segmentation
283
    Dataset: Cityscapes
284
    Metrics:
285
      mIoU: 79.63
286
      mIoU(ms+flip): 80.98
287
  Config: configs/deeplabv3/deeplabv3_r50b-d8_512x1024_80k_cityscapes.py
288
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50b-d8_512x1024_80k_cityscapes/deeplabv3_r50b-d8_512x1024_80k_cityscapes_20201225_155148-ec368954.pth
289
- Name: deeplabv3_r101b-d8_512x1024_80k_cityscapes
290
  In Collection: deeplabv3
291
  Metadata:
292
    backbone: R-101b-D8
293
    crop size: (512,1024)
294
    lr schd: 80000
295
    inference time (ms/im):
296
    - value: 552.49
297
      hardware: V100
298
      backend: PyTorch
299
      batch size: 1
300
      mode: FP32
301
      resolution: (512,1024)
302
    Training Memory (GB): 9.5
303
  Results:
304
  - Task: Semantic Segmentation
305
    Dataset: Cityscapes
306
    Metrics:
307
      mIoU: 80.01
308
      mIoU(ms+flip): 81.21
309
  Config: configs/deeplabv3/deeplabv3_r101b-d8_512x1024_80k_cityscapes.py
310
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101b-d8_512x1024_80k_cityscapes/deeplabv3_r101b-d8_512x1024_80k_cityscapes_20201226_171821-8fd49503.pth
311
- Name: deeplabv3_r18b-d8_769x769_80k_cityscapes
312
  In Collection: deeplabv3
313
  Metadata:
314
    backbone: R-18b-D8
315
    crop size: (769,769)
316
    lr schd: 80000
317
    inference time (ms/im):
318
    - value: 172.71
319
      hardware: V100
320
      backend: PyTorch
321
      batch size: 1
322
      mode: FP32
323
      resolution: (769,769)
324
    Training Memory (GB): 1.8
325
  Results:
326
  - Task: Semantic Segmentation
327
    Dataset: Cityscapes
328
    Metrics:
329
      mIoU: 76.63
330
      mIoU(ms+flip): 77.51
331
  Config: configs/deeplabv3/deeplabv3_r18b-d8_769x769_80k_cityscapes.py
332
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18b-d8_769x769_80k_cityscapes/deeplabv3_r18b-d8_769x769_80k_cityscapes_20201225_094144-fdc985d9.pth
333
- Name: deeplabv3_r50b-d8_769x769_80k_cityscapes
334
  In Collection: deeplabv3
335
  Metadata:
336
    backbone: R-50b-D8
337
    crop size: (769,769)
338
    lr schd: 80000
339
    inference time (ms/im):
340
    - value: 862.07
341
      hardware: V100
342
      backend: PyTorch
343
      batch size: 1
344
      mode: FP32
345
      resolution: (769,769)
346
    Training Memory (GB): 6.8
347
  Results:
348
  - Task: Semantic Segmentation
349
    Dataset: Cityscapes
350
    Metrics:
351
      mIoU: 78.8
352
      mIoU(ms+flip): 80.27
353
  Config: configs/deeplabv3/deeplabv3_r50b-d8_769x769_80k_cityscapes.py
354
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50b-d8_769x769_80k_cityscapes/deeplabv3_r50b-d8_769x769_80k_cityscapes_20201225_155404-87fb0cf4.pth
355
- Name: deeplabv3_r101b-d8_769x769_80k_cityscapes
356
  In Collection: deeplabv3
357
  Metadata:
358
    backbone: R-101b-D8
359
    crop size: (769,769)
360
    lr schd: 80000
361
    inference time (ms/im):
362
    - value: 1219.51
363
      hardware: V100
364
      backend: PyTorch
365
      batch size: 1
366
      mode: FP32
367
      resolution: (769,769)
368
    Training Memory (GB): 10.7
369
  Results:
370
  - Task: Semantic Segmentation
371
    Dataset: Cityscapes
372
    Metrics:
373
      mIoU: 79.41
374
      mIoU(ms+flip): 80.73
375
  Config: configs/deeplabv3/deeplabv3_r101b-d8_769x769_80k_cityscapes.py
376
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101b-d8_769x769_80k_cityscapes/deeplabv3_r101b-d8_769x769_80k_cityscapes_20201226_190843-9142ee57.pth
377
- Name: deeplabv3_r50-d8_512x512_80k_ade20k
378
  In Collection: deeplabv3
379
  Metadata:
380
    backbone: R-50-D8
381
    crop size: (512,512)
382
    lr schd: 80000
383
    inference time (ms/im):
384
    - value: 67.75
385
      hardware: V100
386
      backend: PyTorch
387
      batch size: 1
388
      mode: FP32
389
      resolution: (512,512)
390
    Training Memory (GB): 8.9
391
  Results:
392
  - Task: Semantic Segmentation
393
    Dataset: ADE20K
394
    Metrics:
395
      mIoU: 42.42
396
      mIoU(ms+flip): 43.28
397
  Config: configs/deeplabv3/deeplabv3_r50-d8_512x512_80k_ade20k.py
398
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_80k_ade20k/deeplabv3_r50-d8_512x512_80k_ade20k_20200614_185028-0bb3f844.pth
399
- Name: deeplabv3_r101-d8_512x512_80k_ade20k
400
  In Collection: deeplabv3
401
  Metadata:
402
    backbone: R-101-D8
403
    crop size: (512,512)
404
    lr schd: 80000
405
    inference time (ms/im):
406
    - value: 98.62
407
      hardware: V100
408
      backend: PyTorch
409
      batch size: 1
410
      mode: FP32
411
      resolution: (512,512)
412
    Training Memory (GB): 12.4
413
  Results:
414
  - Task: Semantic Segmentation
415
    Dataset: ADE20K
416
    Metrics:
417
      mIoU: 44.08
418
      mIoU(ms+flip): 45.19
419
  Config: configs/deeplabv3/deeplabv3_r101-d8_512x512_80k_ade20k.py
420
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_80k_ade20k/deeplabv3_r101-d8_512x512_80k_ade20k_20200615_021256-d89c7fa4.pth
421
- Name: deeplabv3_r50-d8_512x512_160k_ade20k
422
  In Collection: deeplabv3
423
  Metadata:
424
    backbone: R-50-D8
425
    crop size: (512,512)
426
    lr schd: 160000
427
  Results:
428
  - Task: Semantic Segmentation
429
    Dataset: ADE20K
430
    Metrics:
431
      mIoU: 42.66
432
      mIoU(ms+flip): 44.09
433
  Config: configs/deeplabv3/deeplabv3_r50-d8_512x512_160k_ade20k.py
434
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_160k_ade20k/deeplabv3_r50-d8_512x512_160k_ade20k_20200615_123227-5d0ee427.pth
435
- Name: deeplabv3_r101-d8_512x512_160k_ade20k
436
  In Collection: deeplabv3
437
  Metadata:
438
    backbone: R-101-D8
439
    crop size: (512,512)
440
    lr schd: 160000
441
  Results:
442
  - Task: Semantic Segmentation
443
    Dataset: ADE20K
444
    Metrics:
445
      mIoU: 45.0
446
      mIoU(ms+flip): 46.66
447
  Config: configs/deeplabv3/deeplabv3_r101-d8_512x512_160k_ade20k.py
448
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_160k_ade20k/deeplabv3_r101-d8_512x512_160k_ade20k_20200615_105816-b1f72b3b.pth
449
- Name: deeplabv3_r50-d8_512x512_20k_voc12aug
450
  In Collection: deeplabv3
451
  Metadata:
452
    backbone: R-50-D8
453
    crop size: (512,512)
454
    lr schd: 20000
455
    inference time (ms/im):
456
    - value: 72.05
457
      hardware: V100
458
      backend: PyTorch
459
      batch size: 1
460
      mode: FP32
461
      resolution: (512,512)
462
    Training Memory (GB): 6.1
463
  Results:
464
  - Task: Semantic Segmentation
465
    Dataset: Pascal VOC 2012 + Aug
466
    Metrics:
467
      mIoU: 76.17
468
      mIoU(ms+flip): 77.42
469
  Config: configs/deeplabv3/deeplabv3_r50-d8_512x512_20k_voc12aug.py
470
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_20k_voc12aug/deeplabv3_r50-d8_512x512_20k_voc12aug_20200617_010906-596905ef.pth
471
- Name: deeplabv3_r101-d8_512x512_20k_voc12aug
472
  In Collection: deeplabv3
473
  Metadata:
474
    backbone: R-101-D8
475
    crop size: (512,512)
476
    lr schd: 20000
477
    inference time (ms/im):
478
    - value: 101.94
479
      hardware: V100
480
      backend: PyTorch
481
      batch size: 1
482
      mode: FP32
483
      resolution: (512,512)
484
    Training Memory (GB): 9.6
485
  Results:
486
  - Task: Semantic Segmentation
487
    Dataset: Pascal VOC 2012 + Aug
488
    Metrics:
489
      mIoU: 78.7
490
      mIoU(ms+flip): 79.95
491
  Config: configs/deeplabv3/deeplabv3_r101-d8_512x512_20k_voc12aug.py
492
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_20k_voc12aug/deeplabv3_r101-d8_512x512_20k_voc12aug_20200617_010932-8d13832f.pth
493
- Name: deeplabv3_r50-d8_512x512_40k_voc12aug
494
  In Collection: deeplabv3
495
  Metadata:
496
    backbone: R-50-D8
497
    crop size: (512,512)
498
    lr schd: 40000
499
  Results:
500
  - Task: Semantic Segmentation
501
    Dataset: Pascal VOC 2012 + Aug
502
    Metrics:
503
      mIoU: 77.68
504
      mIoU(ms+flip): 78.78
505
  Config: configs/deeplabv3/deeplabv3_r50-d8_512x512_40k_voc12aug.py
506
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_40k_voc12aug/deeplabv3_r50-d8_512x512_40k_voc12aug_20200613_161546-2ae96e7e.pth
507
- Name: deeplabv3_r101-d8_512x512_40k_voc12aug
508
  In Collection: deeplabv3
509
  Metadata:
510
    backbone: R-101-D8
511
    crop size: (512,512)
512
    lr schd: 40000
513
  Results:
514
  - Task: Semantic Segmentation
515
    Dataset: Pascal VOC 2012 + Aug
516
    Metrics:
517
      mIoU: 77.92
518
      mIoU(ms+flip): 79.18
519
  Config: configs/deeplabv3/deeplabv3_r101-d8_512x512_40k_voc12aug.py
520
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_40k_voc12aug/deeplabv3_r101-d8_512x512_40k_voc12aug_20200613_161432-0017d784.pth
521
- Name: deeplabv3_r101-d8_480x480_40k_pascal_context
522
  In Collection: deeplabv3
523
  Metadata:
524
    backbone: R-101-D8
525
    crop size: (480,480)
526
    lr schd: 40000
527
    inference time (ms/im):
528
    - value: 141.04
529
      hardware: V100
530
      backend: PyTorch
531
      batch size: 1
532
      mode: FP32
533
      resolution: (480,480)
534
    Training Memory (GB): 9.2
535
  Results:
536
  - Task: Semantic Segmentation
537
    Dataset: Pascal Context
538
    Metrics:
539
      mIoU: 46.55
540
      mIoU(ms+flip): 47.81
541
  Config: configs/deeplabv3/deeplabv3_r101-d8_480x480_40k_pascal_context.py
542
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_40k_pascal_context/deeplabv3_r101-d8_480x480_40k_pascal_context_20200911_204118-1aa27336.pth
543
- Name: deeplabv3_r101-d8_480x480_80k_pascal_context
544
  In Collection: deeplabv3
545
  Metadata:
546
    backbone: R-101-D8
547
    crop size: (480,480)
548
    lr schd: 80000
549
  Results:
550
  - Task: Semantic Segmentation
551
    Dataset: Pascal Context
552
    Metrics:
553
      mIoU: 46.42
554
      mIoU(ms+flip): 47.53
555
  Config: configs/deeplabv3/deeplabv3_r101-d8_480x480_80k_pascal_context.py
556
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_80k_pascal_context/deeplabv3_r101-d8_480x480_80k_pascal_context_20200911_170155-2a21fff3.pth
557
- Name: deeplabv3_r101-d8_480x480_40k_pascal_context_59
558
  In Collection: deeplabv3
559
  Metadata:
560
    backbone: R-101-D8
561
    crop size: (480,480)
562
    lr schd: 40000
563
  Results:
564
  - Task: Semantic Segmentation
565
    Dataset: Pascal Context 59
566
    Metrics:
567
      mIoU: 52.61
568
      mIoU(ms+flip): 54.28
569
  Config: configs/deeplabv3/deeplabv3_r101-d8_480x480_40k_pascal_context_59.py
570
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_40k_pascal_context_59/deeplabv3_r101-d8_480x480_40k_pascal_context_59_20210416_110332-cb08ea46.pth
571
- Name: deeplabv3_r101-d8_480x480_80k_pascal_context_59
572
  In Collection: deeplabv3
573
  Metadata:
574
    backbone: R-101-D8
575
    crop size: (480,480)
576
    lr schd: 80000
577
  Results:
578
  - Task: Semantic Segmentation
579
    Dataset: Pascal Context 59
580
    Metrics:
581
      mIoU: 52.46
582
      mIoU(ms+flip): 54.09
583
  Config: configs/deeplabv3/deeplabv3_r101-d8_480x480_80k_pascal_context_59.py
584
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_80k_pascal_context_59/deeplabv3_r101-d8_480x480_80k_pascal_context_59_20210416_113002-26303993.pth
585
- Name: deeplabv3_r50-d8_512x512_4x4_20k_coco-stuff10k
586
  In Collection: deeplabv3
587
  Metadata:
588
    backbone: R-50-D8
589
    crop size: (512,512)
590
    lr schd: 20000
591
    inference time (ms/im):
592
    - value: 92.59
593
      hardware: V100
594
      backend: PyTorch
595
      batch size: 1
596
      mode: FP32
597
      resolution: (512,512)
598
    Training Memory (GB): 9.6
599
  Results:
600
  - Task: Semantic Segmentation
601
    Dataset: COCO-Stuff 10k
602
    Metrics:
603
      mIoU: 34.66
604
      mIoU(ms+flip): 36.08
605
  Config: configs/deeplabv3/deeplabv3_r50-d8_512x512_4x4_20k_coco-stuff10k.py
606
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_20k_coco-stuff10k/deeplabv3_r50-d8_512x512_4x4_20k_coco-stuff10k_20210821_043025-b35f789d.pth
607
- Name: deeplabv3_r101-d8_512x512_4x4_20k_coco-stuff10k
608
  In Collection: deeplabv3
609
  Metadata:
610
    backbone: R-101-D8
611
    crop size: (512,512)
612
    lr schd: 20000
613
    inference time (ms/im):
614
    - value: 114.94
615
      hardware: V100
616
      backend: PyTorch
617
      batch size: 1
618
      mode: FP32
619
      resolution: (512,512)
620
    Training Memory (GB): 13.2
621
  Results:
622
  - Task: Semantic Segmentation
623
    Dataset: COCO-Stuff 10k
624
    Metrics:
625
      mIoU: 37.3
626
      mIoU(ms+flip): 38.42
627
  Config: configs/deeplabv3/deeplabv3_r101-d8_512x512_4x4_20k_coco-stuff10k.py
628
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_20k_coco-stuff10k/deeplabv3_r101-d8_512x512_4x4_20k_coco-stuff10k_20210821_043025-c49752cb.pth
629
- Name: deeplabv3_r50-d8_512x512_4x4_40k_coco-stuff10k
630
  In Collection: deeplabv3
631
  Metadata:
632
    backbone: R-50-D8
633
    crop size: (512,512)
634
    lr schd: 40000
635
  Results:
636
  - Task: Semantic Segmentation
637
    Dataset: COCO-Stuff 10k
638
    Metrics:
639
      mIoU: 35.73
640
      mIoU(ms+flip): 37.09
641
  Config: configs/deeplabv3/deeplabv3_r50-d8_512x512_4x4_40k_coco-stuff10k.py
642
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_40k_coco-stuff10k/deeplabv3_r50-d8_512x512_4x4_40k_coco-stuff10k_20210821_043305-dc76f3ff.pth
643
- Name: deeplabv3_r101-d8_512x512_4x4_40k_coco-stuff10k
644
  In Collection: deeplabv3
645
  Metadata:
646
    backbone: R-101-D8
647
    crop size: (512,512)
648
    lr schd: 40000
649
  Results:
650
  - Task: Semantic Segmentation
651
    Dataset: COCO-Stuff 10k
652
    Metrics:
653
      mIoU: 37.81
654
      mIoU(ms+flip): 38.8
655
  Config: configs/deeplabv3/deeplabv3_r101-d8_512x512_4x4_40k_coco-stuff10k.py
656
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_40k_coco-stuff10k/deeplabv3_r101-d8_512x512_4x4_40k_coco-stuff10k_20210821_043305-636cb433.pth
657
- Name: deeplabv3_r50-d8_512x512_4x4_80k_coco-stuff164k
658
  In Collection: deeplabv3
659
  Metadata:
660
    backbone: R-50-D8
661
    crop size: (512,512)
662
    lr schd: 80000
663
    inference time (ms/im):
664
    - value: 92.59
665
      hardware: V100
666
      backend: PyTorch
667
      batch size: 1
668
      mode: FP32
669
      resolution: (512,512)
670
    Training Memory (GB): 9.6
671
  Results:
672
  - Task: Semantic Segmentation
673
    Dataset: COCO-Stuff 164k
674
    Metrics:
675
      mIoU: 39.38
676
      mIoU(ms+flip): 40.03
677
  Config: configs/deeplabv3/deeplabv3_r50-d8_512x512_4x4_80k_coco-stuff164k.py
678
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_80k_coco-stuff164k/deeplabv3_r50-d8_512x512_4x4_80k_coco-stuff164k_20210709_163016-88675c24.pth
679
- Name: deeplabv3_r101-d8_512x512_4x4_80k_coco-stuff164k
680
  In Collection: deeplabv3
681
  Metadata:
682
    backbone: R-101-D8
683
    crop size: (512,512)
684
    lr schd: 80000
685
    inference time (ms/im):
686
    - value: 114.94
687
      hardware: V100
688
      backend: PyTorch
689
      batch size: 1
690
      mode: FP32
691
      resolution: (512,512)
692
    Training Memory (GB): 13.2
693
  Results:
694
  - Task: Semantic Segmentation
695
    Dataset: COCO-Stuff 164k
696
    Metrics:
697
      mIoU: 40.87
698
      mIoU(ms+flip): 41.5
699
  Config: configs/deeplabv3/deeplabv3_r101-d8_512x512_4x4_80k_coco-stuff164k.py
700
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_80k_coco-stuff164k/deeplabv3_r101-d8_512x512_4x4_80k_coco-stuff164k_20210709_201252-13600dc2.pth
701
- Name: deeplabv3_r50-d8_512x512_4x4_160k_coco-stuff164k
702
  In Collection: deeplabv3
703
  Metadata:
704
    backbone: R-50-D8
705
    crop size: (512,512)
706
    lr schd: 160000
707
  Results:
708
  - Task: Semantic Segmentation
709
    Dataset: COCO-Stuff 164k
710
    Metrics:
711
      mIoU: 41.09
712
      mIoU(ms+flip): 41.69
713
  Config: configs/deeplabv3/deeplabv3_r50-d8_512x512_4x4_160k_coco-stuff164k.py
714
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_160k_coco-stuff164k/deeplabv3_r50-d8_512x512_4x4_160k_coco-stuff164k_20210709_163016-49f2812b.pth
715
- Name: deeplabv3_r101-d8_512x512_4x4_160k_coco-stuff164k
716
  In Collection: deeplabv3
717
  Metadata:
718
    backbone: R-101-D8
719
    crop size: (512,512)
720
    lr schd: 160000
721
  Results:
722
  - Task: Semantic Segmentation
723
    Dataset: COCO-Stuff 164k
724
    Metrics:
725
      mIoU: 41.82
726
      mIoU(ms+flip): 42.49
727
  Config: configs/deeplabv3/deeplabv3_r101-d8_512x512_4x4_160k_coco-stuff164k.py
728
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_160k_coco-stuff164k/deeplabv3_r101-d8_512x512_4x4_160k_coco-stuff164k_20210709_155402-f035acfd.pth
729
- Name: deeplabv3_r50-d8_512x512_4x4_320k_coco-stuff164k
730
  In Collection: deeplabv3
731
  Metadata:
732
    backbone: R-50-D8
733
    crop size: (512,512)
734
    lr schd: 320000
735
  Results:
736
  - Task: Semantic Segmentation
737
    Dataset: COCO-Stuff 164k
738
    Metrics:
739
      mIoU: 41.37
740
      mIoU(ms+flip): 42.22
741
  Config: configs/deeplabv3/deeplabv3_r50-d8_512x512_4x4_320k_coco-stuff164k.py
742
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_320k_coco-stuff164k/deeplabv3_r50-d8_512x512_4x4_320k_coco-stuff164k_20210709_155403-51b21115.pth
743
- Name: deeplabv3_r101-d8_512x512_4x4_320k_coco-stuff164k
744
  In Collection: deeplabv3
745
  Metadata:
746
    backbone: R-101-D8
747
    crop size: (512,512)
748
    lr schd: 320000
749
  Results:
750
  - Task: Semantic Segmentation
751
    Dataset: COCO-Stuff 164k
752
    Metrics:
753
      mIoU: 42.61
754
      mIoU(ms+flip): 43.42
755
  Config: configs/deeplabv3/deeplabv3_r101-d8_512x512_4x4_320k_coco-stuff164k.py
756
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_320k_coco-stuff164k/deeplabv3_r101-d8_512x512_4x4_320k_coco-stuff164k_20210709_155402-3cbca14d.pth