--- a +++ b/configs/deeplabv3/deeplabv3.yml @@ -0,0 +1,756 @@ +Collections: +- Name: deeplabv3 + Metadata: + Training Data: + - Cityscapes + - ADE20K + - Pascal VOC 2012 + Aug + - Pascal Context + - Pascal Context 59 + - COCO-Stuff 10k + - COCO-Stuff 164k + Paper: + URL: https://arxiv.org/abs/1706.05587 + Title: Rethinking atrous convolution for semantic image segmentation + README: configs/deeplabv3/README.md + Code: + URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/aspp_head.py#L54 + Version: v0.17.0 + Converted From: + Code: https://github.com/tensorflow/models/tree/master/research/deeplab +Models: +- Name: deeplabv3_r50-d8_512x1024_40k_cityscapes + In Collection: deeplabv3 + Metadata: + backbone: R-50-D8 + crop size: (512,1024) + lr schd: 40000 + inference time (ms/im): + - value: 389.11 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,1024) + Training Memory (GB): 6.1 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.09 + mIoU(ms+flip): 80.45 + Config: configs/deeplabv3/deeplabv3_r50-d8_512x1024_40k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x1024_40k_cityscapes/deeplabv3_r50-d8_512x1024_40k_cityscapes_20200605_022449-acadc2f8.pth +- Name: deeplabv3_r101-d8_512x1024_40k_cityscapes + In Collection: deeplabv3 + Metadata: + backbone: R-101-D8 + crop size: (512,1024) + lr schd: 40000 + inference time (ms/im): + - value: 520.83 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,1024) + Training Memory (GB): 9.6 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.12 + mIoU(ms+flip): 79.61 + Config: configs/deeplabv3/deeplabv3_r101-d8_512x1024_40k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x1024_40k_cityscapes/deeplabv3_r101-d8_512x1024_40k_cityscapes_20200605_012241-7fd3f799.pth +- Name: deeplabv3_r50-d8_769x769_40k_cityscapes + In Collection: deeplabv3 + Metadata: + backbone: R-50-D8 + crop size: (769,769) + lr schd: 40000 + inference time (ms/im): + - value: 900.9 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (769,769) + Training Memory (GB): 6.9 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.58 + mIoU(ms+flip): 79.89 + Config: configs/deeplabv3/deeplabv3_r50-d8_769x769_40k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_769x769_40k_cityscapes/deeplabv3_r50-d8_769x769_40k_cityscapes_20200606_113723-7eda553c.pth +- Name: deeplabv3_r101-d8_769x769_40k_cityscapes + In Collection: deeplabv3 + Metadata: + backbone: R-101-D8 + crop size: (769,769) + lr schd: 40000 + inference time (ms/im): + - value: 1204.82 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (769,769) + Training Memory (GB): 10.9 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.27 + mIoU(ms+flip): 80.11 + Config: configs/deeplabv3/deeplabv3_r101-d8_769x769_40k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_769x769_40k_cityscapes/deeplabv3_r101-d8_769x769_40k_cityscapes_20200606_113809-c64f889f.pth +- Name: deeplabv3_r18-d8_512x1024_80k_cityscapes + In Collection: deeplabv3 + Metadata: + backbone: R-18-D8 + crop size: (512,1024) + lr schd: 80000 + inference time (ms/im): + - value: 72.57 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,1024) + Training Memory (GB): 1.7 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 76.7 + mIoU(ms+flip): 78.27 + Config: configs/deeplabv3/deeplabv3_r18-d8_512x1024_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18-d8_512x1024_80k_cityscapes/deeplabv3_r18-d8_512x1024_80k_cityscapes_20201225_021506-23dffbe2.pth +- Name: deeplabv3_r50-d8_512x1024_80k_cityscapes + In Collection: deeplabv3 + Metadata: + backbone: R-50-D8 + crop size: (512,1024) + lr schd: 80000 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.32 + mIoU(ms+flip): 80.57 + Config: configs/deeplabv3/deeplabv3_r50-d8_512x1024_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x1024_80k_cityscapes/deeplabv3_r50-d8_512x1024_80k_cityscapes_20200606_113404-b92cfdd4.pth +- Name: deeplabv3_r101-d8_512x1024_80k_cityscapes + In Collection: deeplabv3 + Metadata: + backbone: R-101-D8 + crop size: (512,1024) + lr schd: 80000 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 80.2 + mIoU(ms+flip): 81.21 + Config: configs/deeplabv3/deeplabv3_r101-d8_512x1024_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x1024_80k_cityscapes/deeplabv3_r101-d8_512x1024_80k_cityscapes_20200606_113503-9e428899.pth +- Name: deeplabv3_r101-d8_fp16_512x1024_80k_cityscapes + In Collection: deeplabv3 + Metadata: + backbone: R-101-D8 + crop size: (512,1024) + lr schd: 80000 + inference time (ms/im): + - value: 259.07 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP16 + resolution: (512,1024) + Training Memory (GB): 5.75 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 80.48 + Config: configs/deeplabv3/deeplabv3_r101-d8_fp16_512x1024_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_fp16_512x1024_80k_cityscapes/deeplabv3_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230920-774d9cec.pth +- Name: deeplabv3_r18-d8_769x769_80k_cityscapes + In Collection: deeplabv3 + Metadata: + backbone: R-18-D8 + crop size: (769,769) + lr schd: 80000 + inference time (ms/im): + - value: 180.18 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (769,769) + Training Memory (GB): 1.9 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 76.6 + mIoU(ms+flip): 78.26 + Config: configs/deeplabv3/deeplabv3_r18-d8_769x769_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18-d8_769x769_80k_cityscapes/deeplabv3_r18-d8_769x769_80k_cityscapes_20201225_021506-6452126a.pth +- Name: deeplabv3_r50-d8_769x769_80k_cityscapes + In Collection: deeplabv3 + Metadata: + backbone: R-50-D8 + crop size: (769,769) + lr schd: 80000 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.89 + mIoU(ms+flip): 81.06 + Config: configs/deeplabv3/deeplabv3_r50-d8_769x769_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_769x769_80k_cityscapes/deeplabv3_r50-d8_769x769_80k_cityscapes_20200606_221338-788d6228.pth +- Name: deeplabv3_r101-d8_769x769_80k_cityscapes + In Collection: deeplabv3 + Metadata: + backbone: R-101-D8 + crop size: (769,769) + lr schd: 80000 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.67 + mIoU(ms+flip): 80.81 + Config: configs/deeplabv3/deeplabv3_r101-d8_769x769_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_769x769_80k_cityscapes/deeplabv3_r101-d8_769x769_80k_cityscapes_20200607_013353-60e95418.pth +- Name: deeplabv3_r101-d16-mg124_512x1024_80k_cityscapes + In Collection: deeplabv3 + Metadata: + backbone: R-101-D16-MG124 + crop size: (512,1024) + lr schd: 80000 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.36 + mIoU(ms+flip): 79.84 + Config: configs/deeplabv3/deeplabv3_r101-d16-mg124_512x1024_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d16-mg124_512x1024_80k_cityscapes/deeplabv3_r101-d16-mg124_512x1024_80k_cityscapes_20200908_005644-57bb8425.pth +- Name: deeplabv3_r18b-d8_512x1024_80k_cityscapes + In Collection: deeplabv3 + Metadata: + backbone: R-18b-D8 + crop size: (512,1024) + lr schd: 80000 + inference time (ms/im): + - value: 71.79 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,1024) + Training Memory (GB): 1.6 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 76.26 + mIoU(ms+flip): 77.88 + Config: configs/deeplabv3/deeplabv3_r18b-d8_512x1024_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18b-d8_512x1024_80k_cityscapes/deeplabv3_r18b-d8_512x1024_80k_cityscapes_20201225_094144-46040cef.pth +- Name: deeplabv3_r50b-d8_512x1024_80k_cityscapes + In Collection: deeplabv3 + Metadata: + backbone: R-50b-D8 + crop size: (512,1024) + lr schd: 80000 + inference time (ms/im): + - value: 364.96 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,1024) + Training Memory (GB): 6.0 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.63 + mIoU(ms+flip): 80.98 + Config: configs/deeplabv3/deeplabv3_r50b-d8_512x1024_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50b-d8_512x1024_80k_cityscapes/deeplabv3_r50b-d8_512x1024_80k_cityscapes_20201225_155148-ec368954.pth +- Name: deeplabv3_r101b-d8_512x1024_80k_cityscapes + In Collection: deeplabv3 + Metadata: + backbone: R-101b-D8 + crop size: (512,1024) + lr schd: 80000 + inference time (ms/im): + - value: 552.49 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,1024) + Training Memory (GB): 9.5 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 80.01 + mIoU(ms+flip): 81.21 + Config: configs/deeplabv3/deeplabv3_r101b-d8_512x1024_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101b-d8_512x1024_80k_cityscapes/deeplabv3_r101b-d8_512x1024_80k_cityscapes_20201226_171821-8fd49503.pth +- Name: deeplabv3_r18b-d8_769x769_80k_cityscapes + In Collection: deeplabv3 + Metadata: + backbone: R-18b-D8 + crop size: (769,769) + lr schd: 80000 + inference time (ms/im): + - value: 172.71 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (769,769) + Training Memory (GB): 1.8 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 76.63 + mIoU(ms+flip): 77.51 + Config: configs/deeplabv3/deeplabv3_r18b-d8_769x769_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18b-d8_769x769_80k_cityscapes/deeplabv3_r18b-d8_769x769_80k_cityscapes_20201225_094144-fdc985d9.pth +- Name: deeplabv3_r50b-d8_769x769_80k_cityscapes + In Collection: deeplabv3 + Metadata: + backbone: R-50b-D8 + crop size: (769,769) + lr schd: 80000 + inference time (ms/im): + - value: 862.07 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (769,769) + Training Memory (GB): 6.8 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.8 + mIoU(ms+flip): 80.27 + Config: configs/deeplabv3/deeplabv3_r50b-d8_769x769_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50b-d8_769x769_80k_cityscapes/deeplabv3_r50b-d8_769x769_80k_cityscapes_20201225_155404-87fb0cf4.pth +- Name: deeplabv3_r101b-d8_769x769_80k_cityscapes + In Collection: deeplabv3 + Metadata: + backbone: R-101b-D8 + crop size: (769,769) + lr schd: 80000 + inference time (ms/im): + - value: 1219.51 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (769,769) + Training Memory (GB): 10.7 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.41 + mIoU(ms+flip): 80.73 + Config: configs/deeplabv3/deeplabv3_r101b-d8_769x769_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101b-d8_769x769_80k_cityscapes/deeplabv3_r101b-d8_769x769_80k_cityscapes_20201226_190843-9142ee57.pth +- Name: deeplabv3_r50-d8_512x512_80k_ade20k + In Collection: deeplabv3 + Metadata: + backbone: R-50-D8 + crop size: (512,512) + lr schd: 80000 + inference time (ms/im): + - value: 67.75 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,512) + Training Memory (GB): 8.9 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 42.42 + mIoU(ms+flip): 43.28 + Config: configs/deeplabv3/deeplabv3_r50-d8_512x512_80k_ade20k.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_80k_ade20k/deeplabv3_r50-d8_512x512_80k_ade20k_20200614_185028-0bb3f844.pth +- Name: deeplabv3_r101-d8_512x512_80k_ade20k + In Collection: deeplabv3 + Metadata: + backbone: R-101-D8 + crop size: (512,512) + lr schd: 80000 + inference time (ms/im): + - value: 98.62 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,512) + Training Memory (GB): 12.4 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 44.08 + mIoU(ms+flip): 45.19 + Config: configs/deeplabv3/deeplabv3_r101-d8_512x512_80k_ade20k.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_80k_ade20k/deeplabv3_r101-d8_512x512_80k_ade20k_20200615_021256-d89c7fa4.pth +- Name: deeplabv3_r50-d8_512x512_160k_ade20k + In Collection: deeplabv3 + Metadata: + backbone: R-50-D8 + crop size: (512,512) + lr schd: 160000 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 42.66 + mIoU(ms+flip): 44.09 + Config: configs/deeplabv3/deeplabv3_r50-d8_512x512_160k_ade20k.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_160k_ade20k/deeplabv3_r50-d8_512x512_160k_ade20k_20200615_123227-5d0ee427.pth +- Name: deeplabv3_r101-d8_512x512_160k_ade20k + In Collection: deeplabv3 + Metadata: + backbone: R-101-D8 + crop size: (512,512) + lr schd: 160000 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 45.0 + mIoU(ms+flip): 46.66 + Config: configs/deeplabv3/deeplabv3_r101-d8_512x512_160k_ade20k.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_160k_ade20k/deeplabv3_r101-d8_512x512_160k_ade20k_20200615_105816-b1f72b3b.pth +- Name: deeplabv3_r50-d8_512x512_20k_voc12aug + In Collection: deeplabv3 + Metadata: + backbone: R-50-D8 + crop size: (512,512) + lr schd: 20000 + inference time (ms/im): + - value: 72.05 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,512) + Training Memory (GB): 6.1 + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 76.17 + mIoU(ms+flip): 77.42 + Config: configs/deeplabv3/deeplabv3_r50-d8_512x512_20k_voc12aug.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_20k_voc12aug/deeplabv3_r50-d8_512x512_20k_voc12aug_20200617_010906-596905ef.pth +- Name: deeplabv3_r101-d8_512x512_20k_voc12aug + In Collection: deeplabv3 + Metadata: + backbone: R-101-D8 + crop size: (512,512) + lr schd: 20000 + inference time (ms/im): + - value: 101.94 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,512) + Training Memory (GB): 9.6 + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 78.7 + mIoU(ms+flip): 79.95 + Config: configs/deeplabv3/deeplabv3_r101-d8_512x512_20k_voc12aug.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_20k_voc12aug/deeplabv3_r101-d8_512x512_20k_voc12aug_20200617_010932-8d13832f.pth +- Name: deeplabv3_r50-d8_512x512_40k_voc12aug + In Collection: deeplabv3 + Metadata: + backbone: R-50-D8 + crop size: (512,512) + lr schd: 40000 + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 77.68 + mIoU(ms+flip): 78.78 + Config: configs/deeplabv3/deeplabv3_r50-d8_512x512_40k_voc12aug.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_40k_voc12aug/deeplabv3_r50-d8_512x512_40k_voc12aug_20200613_161546-2ae96e7e.pth +- Name: deeplabv3_r101-d8_512x512_40k_voc12aug + In Collection: deeplabv3 + Metadata: + backbone: R-101-D8 + crop size: (512,512) + lr schd: 40000 + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 77.92 + mIoU(ms+flip): 79.18 + Config: configs/deeplabv3/deeplabv3_r101-d8_512x512_40k_voc12aug.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_40k_voc12aug/deeplabv3_r101-d8_512x512_40k_voc12aug_20200613_161432-0017d784.pth +- Name: deeplabv3_r101-d8_480x480_40k_pascal_context + In Collection: deeplabv3 + Metadata: + backbone: R-101-D8 + crop size: (480,480) + lr schd: 40000 + inference time (ms/im): + - value: 141.04 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (480,480) + Training Memory (GB): 9.2 + Results: + - Task: Semantic Segmentation + Dataset: Pascal Context + Metrics: + mIoU: 46.55 + mIoU(ms+flip): 47.81 + Config: configs/deeplabv3/deeplabv3_r101-d8_480x480_40k_pascal_context.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_40k_pascal_context/deeplabv3_r101-d8_480x480_40k_pascal_context_20200911_204118-1aa27336.pth +- Name: deeplabv3_r101-d8_480x480_80k_pascal_context + In Collection: deeplabv3 + Metadata: + backbone: R-101-D8 + crop size: (480,480) + lr schd: 80000 + Results: + - Task: Semantic Segmentation + Dataset: Pascal Context + Metrics: + mIoU: 46.42 + mIoU(ms+flip): 47.53 + Config: configs/deeplabv3/deeplabv3_r101-d8_480x480_80k_pascal_context.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_80k_pascal_context/deeplabv3_r101-d8_480x480_80k_pascal_context_20200911_170155-2a21fff3.pth +- Name: deeplabv3_r101-d8_480x480_40k_pascal_context_59 + In Collection: deeplabv3 + Metadata: + backbone: R-101-D8 + crop size: (480,480) + lr schd: 40000 + Results: + - Task: Semantic Segmentation + Dataset: Pascal Context 59 + Metrics: + mIoU: 52.61 + mIoU(ms+flip): 54.28 + Config: configs/deeplabv3/deeplabv3_r101-d8_480x480_40k_pascal_context_59.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_40k_pascal_context_59/deeplabv3_r101-d8_480x480_40k_pascal_context_59_20210416_110332-cb08ea46.pth +- Name: deeplabv3_r101-d8_480x480_80k_pascal_context_59 + In Collection: deeplabv3 + Metadata: + backbone: R-101-D8 + crop size: (480,480) + lr schd: 80000 + Results: + - Task: Semantic Segmentation + Dataset: Pascal Context 59 + Metrics: + mIoU: 52.46 + mIoU(ms+flip): 54.09 + Config: configs/deeplabv3/deeplabv3_r101-d8_480x480_80k_pascal_context_59.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_80k_pascal_context_59/deeplabv3_r101-d8_480x480_80k_pascal_context_59_20210416_113002-26303993.pth +- Name: deeplabv3_r50-d8_512x512_4x4_20k_coco-stuff10k + In Collection: deeplabv3 + Metadata: + backbone: R-50-D8 + crop size: (512,512) + lr schd: 20000 + inference time (ms/im): + - value: 92.59 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,512) + Training Memory (GB): 9.6 + Results: + - Task: Semantic Segmentation + Dataset: COCO-Stuff 10k + Metrics: + mIoU: 34.66 + mIoU(ms+flip): 36.08 + Config: configs/deeplabv3/deeplabv3_r50-d8_512x512_4x4_20k_coco-stuff10k.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_20k_coco-stuff10k/deeplabv3_r50-d8_512x512_4x4_20k_coco-stuff10k_20210821_043025-b35f789d.pth +- Name: deeplabv3_r101-d8_512x512_4x4_20k_coco-stuff10k + In Collection: deeplabv3 + Metadata: + backbone: R-101-D8 + crop size: (512,512) + lr schd: 20000 + inference time (ms/im): + - value: 114.94 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,512) + Training Memory (GB): 13.2 + Results: + - Task: Semantic Segmentation + Dataset: COCO-Stuff 10k + Metrics: + mIoU: 37.3 + mIoU(ms+flip): 38.42 + Config: configs/deeplabv3/deeplabv3_r101-d8_512x512_4x4_20k_coco-stuff10k.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_20k_coco-stuff10k/deeplabv3_r101-d8_512x512_4x4_20k_coco-stuff10k_20210821_043025-c49752cb.pth +- Name: deeplabv3_r50-d8_512x512_4x4_40k_coco-stuff10k + In Collection: deeplabv3 + Metadata: + backbone: R-50-D8 + crop size: (512,512) + lr schd: 40000 + Results: + - Task: Semantic Segmentation + Dataset: COCO-Stuff 10k + Metrics: + mIoU: 35.73 + mIoU(ms+flip): 37.09 + Config: configs/deeplabv3/deeplabv3_r50-d8_512x512_4x4_40k_coco-stuff10k.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_40k_coco-stuff10k/deeplabv3_r50-d8_512x512_4x4_40k_coco-stuff10k_20210821_043305-dc76f3ff.pth +- Name: deeplabv3_r101-d8_512x512_4x4_40k_coco-stuff10k + In Collection: deeplabv3 + Metadata: + backbone: R-101-D8 + crop size: (512,512) + lr schd: 40000 + Results: + - Task: Semantic Segmentation + Dataset: COCO-Stuff 10k + Metrics: + mIoU: 37.81 + mIoU(ms+flip): 38.8 + Config: configs/deeplabv3/deeplabv3_r101-d8_512x512_4x4_40k_coco-stuff10k.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_40k_coco-stuff10k/deeplabv3_r101-d8_512x512_4x4_40k_coco-stuff10k_20210821_043305-636cb433.pth +- Name: deeplabv3_r50-d8_512x512_4x4_80k_coco-stuff164k + In Collection: deeplabv3 + Metadata: + backbone: R-50-D8 + crop size: (512,512) + lr schd: 80000 + inference time (ms/im): + - value: 92.59 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,512) + Training Memory (GB): 9.6 + Results: + - Task: Semantic Segmentation + Dataset: COCO-Stuff 164k + Metrics: + mIoU: 39.38 + mIoU(ms+flip): 40.03 + Config: configs/deeplabv3/deeplabv3_r50-d8_512x512_4x4_80k_coco-stuff164k.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_80k_coco-stuff164k/deeplabv3_r50-d8_512x512_4x4_80k_coco-stuff164k_20210709_163016-88675c24.pth +- Name: deeplabv3_r101-d8_512x512_4x4_80k_coco-stuff164k + In Collection: deeplabv3 + Metadata: + backbone: R-101-D8 + crop size: (512,512) + lr schd: 80000 + inference time (ms/im): + - value: 114.94 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,512) + Training Memory (GB): 13.2 + Results: + - Task: Semantic Segmentation + Dataset: COCO-Stuff 164k + Metrics: + mIoU: 40.87 + mIoU(ms+flip): 41.5 + Config: configs/deeplabv3/deeplabv3_r101-d8_512x512_4x4_80k_coco-stuff164k.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_80k_coco-stuff164k/deeplabv3_r101-d8_512x512_4x4_80k_coco-stuff164k_20210709_201252-13600dc2.pth +- Name: deeplabv3_r50-d8_512x512_4x4_160k_coco-stuff164k + In Collection: deeplabv3 + Metadata: + backbone: R-50-D8 + crop size: (512,512) + lr schd: 160000 + Results: + - Task: Semantic Segmentation + Dataset: COCO-Stuff 164k + Metrics: + mIoU: 41.09 + mIoU(ms+flip): 41.69 + Config: configs/deeplabv3/deeplabv3_r50-d8_512x512_4x4_160k_coco-stuff164k.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_160k_coco-stuff164k/deeplabv3_r50-d8_512x512_4x4_160k_coco-stuff164k_20210709_163016-49f2812b.pth +- Name: deeplabv3_r101-d8_512x512_4x4_160k_coco-stuff164k + In Collection: deeplabv3 + Metadata: + backbone: R-101-D8 + crop size: (512,512) + lr schd: 160000 + Results: + - Task: Semantic Segmentation + Dataset: COCO-Stuff 164k + Metrics: + mIoU: 41.82 + mIoU(ms+flip): 42.49 + Config: configs/deeplabv3/deeplabv3_r101-d8_512x512_4x4_160k_coco-stuff164k.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_160k_coco-stuff164k/deeplabv3_r101-d8_512x512_4x4_160k_coco-stuff164k_20210709_155402-f035acfd.pth +- Name: deeplabv3_r50-d8_512x512_4x4_320k_coco-stuff164k + In Collection: deeplabv3 + Metadata: + backbone: R-50-D8 + crop size: (512,512) + lr schd: 320000 + Results: + - Task: Semantic Segmentation + Dataset: COCO-Stuff 164k + Metrics: + mIoU: 41.37 + mIoU(ms+flip): 42.22 + Config: configs/deeplabv3/deeplabv3_r50-d8_512x512_4x4_320k_coco-stuff164k.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_4x4_320k_coco-stuff164k/deeplabv3_r50-d8_512x512_4x4_320k_coco-stuff164k_20210709_155403-51b21115.pth +- Name: deeplabv3_r101-d8_512x512_4x4_320k_coco-stuff164k + In Collection: deeplabv3 + Metadata: + backbone: R-101-D8 + crop size: (512,512) + lr schd: 320000 + Results: + - Task: Semantic Segmentation + Dataset: COCO-Stuff 164k + Metrics: + mIoU: 42.61 + mIoU(ms+flip): 43.42 + Config: configs/deeplabv3/deeplabv3_r101-d8_512x512_4x4_320k_coco-stuff164k.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_4x4_320k_coco-stuff164k/deeplabv3_r101-d8_512x512_4x4_320k_coco-stuff164k_20210709_155402-3cbca14d.pth