Diff of /configs/danet/danet.yml [000000] .. [4e96d3]

Switch to unified view

a b/configs/danet/danet.yml
1
Collections:
2
- Name: danet
3
  Metadata:
4
    Training Data:
5
    - Cityscapes
6
    - ADE20K
7
    - Pascal VOC 2012 + Aug
8
  Paper:
9
    URL: https://arxiv.org/abs/1809.02983
10
    Title: Dual Attention Network for Scene Segmentation
11
  README: configs/danet/README.md
12
  Code:
13
    URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/da_head.py#L76
14
    Version: v0.17.0
15
  Converted From:
16
    Code: https://github.com/junfu1115/DANet/
17
Models:
18
- Name: danet_r50-d8_512x1024_40k_cityscapes
19
  In Collection: danet
20
  Metadata:
21
    backbone: R-50-D8
22
    crop size: (512,1024)
23
    lr schd: 40000
24
    inference time (ms/im):
25
    - value: 375.94
26
      hardware: V100
27
      backend: PyTorch
28
      batch size: 1
29
      mode: FP32
30
      resolution: (512,1024)
31
    Training Memory (GB): 7.4
32
  Results:
33
  - Task: Semantic Segmentation
34
    Dataset: Cityscapes
35
    Metrics:
36
      mIoU: 78.74
37
  Config: configs/danet/danet_r50-d8_512x1024_40k_cityscapes.py
38
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x1024_40k_cityscapes/danet_r50-d8_512x1024_40k_cityscapes_20200605_191324-c0dbfa5f.pth
39
- Name: danet_r101-d8_512x1024_40k_cityscapes
40
  In Collection: danet
41
  Metadata:
42
    backbone: R-101-D8
43
    crop size: (512,1024)
44
    lr schd: 40000
45
    inference time (ms/im):
46
    - value: 502.51
47
      hardware: V100
48
      backend: PyTorch
49
      batch size: 1
50
      mode: FP32
51
      resolution: (512,1024)
52
    Training Memory (GB): 10.9
53
  Results:
54
  - Task: Semantic Segmentation
55
    Dataset: Cityscapes
56
    Metrics:
57
      mIoU: 80.52
58
  Config: configs/danet/danet_r101-d8_512x1024_40k_cityscapes.py
59
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x1024_40k_cityscapes/danet_r101-d8_512x1024_40k_cityscapes_20200605_200831-c57a7157.pth
60
- Name: danet_r50-d8_769x769_40k_cityscapes
61
  In Collection: danet
62
  Metadata:
63
    backbone: R-50-D8
64
    crop size: (769,769)
65
    lr schd: 40000
66
    inference time (ms/im):
67
    - value: 641.03
68
      hardware: V100
69
      backend: PyTorch
70
      batch size: 1
71
      mode: FP32
72
      resolution: (769,769)
73
    Training Memory (GB): 8.8
74
  Results:
75
  - Task: Semantic Segmentation
76
    Dataset: Cityscapes
77
    Metrics:
78
      mIoU: 78.88
79
      mIoU(ms+flip): 80.62
80
  Config: configs/danet/danet_r50-d8_769x769_40k_cityscapes.py
81
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_769x769_40k_cityscapes/danet_r50-d8_769x769_40k_cityscapes_20200530_025703-76681c60.pth
82
- Name: danet_r101-d8_769x769_40k_cityscapes
83
  In Collection: danet
84
  Metadata:
85
    backbone: R-101-D8
86
    crop size: (769,769)
87
    lr schd: 40000
88
    inference time (ms/im):
89
    - value: 934.58
90
      hardware: V100
91
      backend: PyTorch
92
      batch size: 1
93
      mode: FP32
94
      resolution: (769,769)
95
    Training Memory (GB): 12.8
96
  Results:
97
  - Task: Semantic Segmentation
98
    Dataset: Cityscapes
99
    Metrics:
100
      mIoU: 79.88
101
      mIoU(ms+flip): 81.47
102
  Config: configs/danet/danet_r101-d8_769x769_40k_cityscapes.py
103
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_769x769_40k_cityscapes/danet_r101-d8_769x769_40k_cityscapes_20200530_025717-dcb7fd4e.pth
104
- Name: danet_r50-d8_512x1024_80k_cityscapes
105
  In Collection: danet
106
  Metadata:
107
    backbone: R-50-D8
108
    crop size: (512,1024)
109
    lr schd: 80000
110
  Results:
111
  - Task: Semantic Segmentation
112
    Dataset: Cityscapes
113
    Metrics:
114
      mIoU: 79.34
115
  Config: configs/danet/danet_r50-d8_512x1024_80k_cityscapes.py
116
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x1024_80k_cityscapes/danet_r50-d8_512x1024_80k_cityscapes_20200607_133029-2bfa2293.pth
117
- Name: danet_r101-d8_512x1024_80k_cityscapes
118
  In Collection: danet
119
  Metadata:
120
    backbone: R-101-D8
121
    crop size: (512,1024)
122
    lr schd: 80000
123
  Results:
124
  - Task: Semantic Segmentation
125
    Dataset: Cityscapes
126
    Metrics:
127
      mIoU: 80.41
128
  Config: configs/danet/danet_r101-d8_512x1024_80k_cityscapes.py
129
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x1024_80k_cityscapes/danet_r101-d8_512x1024_80k_cityscapes_20200607_132918-955e6350.pth
130
- Name: danet_r50-d8_769x769_80k_cityscapes
131
  In Collection: danet
132
  Metadata:
133
    backbone: R-50-D8
134
    crop size: (769,769)
135
    lr schd: 80000
136
  Results:
137
  - Task: Semantic Segmentation
138
    Dataset: Cityscapes
139
    Metrics:
140
      mIoU: 79.27
141
      mIoU(ms+flip): 80.96
142
  Config: configs/danet/danet_r50-d8_769x769_80k_cityscapes.py
143
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_769x769_80k_cityscapes/danet_r50-d8_769x769_80k_cityscapes_20200607_132954-495689b4.pth
144
- Name: danet_r101-d8_769x769_80k_cityscapes
145
  In Collection: danet
146
  Metadata:
147
    backbone: R-101-D8
148
    crop size: (769,769)
149
    lr schd: 80000
150
  Results:
151
  - Task: Semantic Segmentation
152
    Dataset: Cityscapes
153
    Metrics:
154
      mIoU: 80.47
155
      mIoU(ms+flip): 82.02
156
  Config: configs/danet/danet_r101-d8_769x769_80k_cityscapes.py
157
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_769x769_80k_cityscapes/danet_r101-d8_769x769_80k_cityscapes_20200607_132918-f3a929e7.pth
158
- Name: danet_r50-d8_512x512_80k_ade20k
159
  In Collection: danet
160
  Metadata:
161
    backbone: R-50-D8
162
    crop size: (512,512)
163
    lr schd: 80000
164
    inference time (ms/im):
165
    - value: 47.17
166
      hardware: V100
167
      backend: PyTorch
168
      batch size: 1
169
      mode: FP32
170
      resolution: (512,512)
171
    Training Memory (GB): 11.5
172
  Results:
173
  - Task: Semantic Segmentation
174
    Dataset: ADE20K
175
    Metrics:
176
      mIoU: 41.66
177
      mIoU(ms+flip): 42.9
178
  Config: configs/danet/danet_r50-d8_512x512_80k_ade20k.py
179
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x512_80k_ade20k/danet_r50-d8_512x512_80k_ade20k_20200615_015125-edb18e08.pth
180
- Name: danet_r101-d8_512x512_80k_ade20k
181
  In Collection: danet
182
  Metadata:
183
    backbone: R-101-D8
184
    crop size: (512,512)
185
    lr schd: 80000
186
    inference time (ms/im):
187
    - value: 70.52
188
      hardware: V100
189
      backend: PyTorch
190
      batch size: 1
191
      mode: FP32
192
      resolution: (512,512)
193
    Training Memory (GB): 15.0
194
  Results:
195
  - Task: Semantic Segmentation
196
    Dataset: ADE20K
197
    Metrics:
198
      mIoU: 43.64
199
      mIoU(ms+flip): 45.19
200
  Config: configs/danet/danet_r101-d8_512x512_80k_ade20k.py
201
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x512_80k_ade20k/danet_r101-d8_512x512_80k_ade20k_20200615_015126-d0357c73.pth
202
- Name: danet_r50-d8_512x512_160k_ade20k
203
  In Collection: danet
204
  Metadata:
205
    backbone: R-50-D8
206
    crop size: (512,512)
207
    lr schd: 160000
208
  Results:
209
  - Task: Semantic Segmentation
210
    Dataset: ADE20K
211
    Metrics:
212
      mIoU: 42.45
213
      mIoU(ms+flip): 43.25
214
  Config: configs/danet/danet_r50-d8_512x512_160k_ade20k.py
215
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x512_160k_ade20k/danet_r50-d8_512x512_160k_ade20k_20200616_082340-9cb35dcd.pth
216
- Name: danet_r101-d8_512x512_160k_ade20k
217
  In Collection: danet
218
  Metadata:
219
    backbone: R-101-D8
220
    crop size: (512,512)
221
    lr schd: 160000
222
  Results:
223
  - Task: Semantic Segmentation
224
    Dataset: ADE20K
225
    Metrics:
226
      mIoU: 44.17
227
      mIoU(ms+flip): 45.02
228
  Config: configs/danet/danet_r101-d8_512x512_160k_ade20k.py
229
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x512_160k_ade20k/danet_r101-d8_512x512_160k_ade20k_20200616_082348-23bf12f9.pth
230
- Name: danet_r50-d8_512x512_20k_voc12aug
231
  In Collection: danet
232
  Metadata:
233
    backbone: R-50-D8
234
    crop size: (512,512)
235
    lr schd: 20000
236
    inference time (ms/im):
237
    - value: 47.76
238
      hardware: V100
239
      backend: PyTorch
240
      batch size: 1
241
      mode: FP32
242
      resolution: (512,512)
243
    Training Memory (GB): 6.5
244
  Results:
245
  - Task: Semantic Segmentation
246
    Dataset: Pascal VOC 2012 + Aug
247
    Metrics:
248
      mIoU: 74.45
249
      mIoU(ms+flip): 75.69
250
  Config: configs/danet/danet_r50-d8_512x512_20k_voc12aug.py
251
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x512_20k_voc12aug/danet_r50-d8_512x512_20k_voc12aug_20200618_070026-9e9e3ab3.pth
252
- Name: danet_r101-d8_512x512_20k_voc12aug
253
  In Collection: danet
254
  Metadata:
255
    backbone: R-101-D8
256
    crop size: (512,512)
257
    lr schd: 20000
258
    inference time (ms/im):
259
    - value: 72.67
260
      hardware: V100
261
      backend: PyTorch
262
      batch size: 1
263
      mode: FP32
264
      resolution: (512,512)
265
    Training Memory (GB): 9.9
266
  Results:
267
  - Task: Semantic Segmentation
268
    Dataset: Pascal VOC 2012 + Aug
269
    Metrics:
270
      mIoU: 76.02
271
      mIoU(ms+flip): 77.23
272
  Config: configs/danet/danet_r101-d8_512x512_20k_voc12aug.py
273
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x512_20k_voc12aug/danet_r101-d8_512x512_20k_voc12aug_20200618_070026-d48d23b2.pth
274
- Name: danet_r50-d8_512x512_40k_voc12aug
275
  In Collection: danet
276
  Metadata:
277
    backbone: R-50-D8
278
    crop size: (512,512)
279
    lr schd: 40000
280
  Results:
281
  - Task: Semantic Segmentation
282
    Dataset: Pascal VOC 2012 + Aug
283
    Metrics:
284
      mIoU: 76.37
285
      mIoU(ms+flip): 77.29
286
  Config: configs/danet/danet_r50-d8_512x512_40k_voc12aug.py
287
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x512_40k_voc12aug/danet_r50-d8_512x512_40k_voc12aug_20200613_235526-426e3a64.pth
288
- Name: danet_r101-d8_512x512_40k_voc12aug
289
  In Collection: danet
290
  Metadata:
291
    backbone: R-101-D8
292
    crop size: (512,512)
293
    lr schd: 40000
294
  Results:
295
  - Task: Semantic Segmentation
296
    Dataset: Pascal VOC 2012 + Aug
297
    Metrics:
298
      mIoU: 76.51
299
      mIoU(ms+flip): 77.32
300
  Config: configs/danet/danet_r101-d8_512x512_40k_voc12aug.py
301
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x512_40k_voc12aug/danet_r101-d8_512x512_40k_voc12aug_20200613_223031-788e232a.pth