|
a |
|
b/configs/danet/danet.yml |
|
|
1 |
Collections: |
|
|
2 |
- Name: danet |
|
|
3 |
Metadata: |
|
|
4 |
Training Data: |
|
|
5 |
- Cityscapes |
|
|
6 |
- ADE20K |
|
|
7 |
- Pascal VOC 2012 + Aug |
|
|
8 |
Paper: |
|
|
9 |
URL: https://arxiv.org/abs/1809.02983 |
|
|
10 |
Title: Dual Attention Network for Scene Segmentation |
|
|
11 |
README: configs/danet/README.md |
|
|
12 |
Code: |
|
|
13 |
URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/da_head.py#L76 |
|
|
14 |
Version: v0.17.0 |
|
|
15 |
Converted From: |
|
|
16 |
Code: https://github.com/junfu1115/DANet/ |
|
|
17 |
Models: |
|
|
18 |
- Name: danet_r50-d8_512x1024_40k_cityscapes |
|
|
19 |
In Collection: danet |
|
|
20 |
Metadata: |
|
|
21 |
backbone: R-50-D8 |
|
|
22 |
crop size: (512,1024) |
|
|
23 |
lr schd: 40000 |
|
|
24 |
inference time (ms/im): |
|
|
25 |
- value: 375.94 |
|
|
26 |
hardware: V100 |
|
|
27 |
backend: PyTorch |
|
|
28 |
batch size: 1 |
|
|
29 |
mode: FP32 |
|
|
30 |
resolution: (512,1024) |
|
|
31 |
Training Memory (GB): 7.4 |
|
|
32 |
Results: |
|
|
33 |
- Task: Semantic Segmentation |
|
|
34 |
Dataset: Cityscapes |
|
|
35 |
Metrics: |
|
|
36 |
mIoU: 78.74 |
|
|
37 |
Config: configs/danet/danet_r50-d8_512x1024_40k_cityscapes.py |
|
|
38 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x1024_40k_cityscapes/danet_r50-d8_512x1024_40k_cityscapes_20200605_191324-c0dbfa5f.pth |
|
|
39 |
- Name: danet_r101-d8_512x1024_40k_cityscapes |
|
|
40 |
In Collection: danet |
|
|
41 |
Metadata: |
|
|
42 |
backbone: R-101-D8 |
|
|
43 |
crop size: (512,1024) |
|
|
44 |
lr schd: 40000 |
|
|
45 |
inference time (ms/im): |
|
|
46 |
- value: 502.51 |
|
|
47 |
hardware: V100 |
|
|
48 |
backend: PyTorch |
|
|
49 |
batch size: 1 |
|
|
50 |
mode: FP32 |
|
|
51 |
resolution: (512,1024) |
|
|
52 |
Training Memory (GB): 10.9 |
|
|
53 |
Results: |
|
|
54 |
- Task: Semantic Segmentation |
|
|
55 |
Dataset: Cityscapes |
|
|
56 |
Metrics: |
|
|
57 |
mIoU: 80.52 |
|
|
58 |
Config: configs/danet/danet_r101-d8_512x1024_40k_cityscapes.py |
|
|
59 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x1024_40k_cityscapes/danet_r101-d8_512x1024_40k_cityscapes_20200605_200831-c57a7157.pth |
|
|
60 |
- Name: danet_r50-d8_769x769_40k_cityscapes |
|
|
61 |
In Collection: danet |
|
|
62 |
Metadata: |
|
|
63 |
backbone: R-50-D8 |
|
|
64 |
crop size: (769,769) |
|
|
65 |
lr schd: 40000 |
|
|
66 |
inference time (ms/im): |
|
|
67 |
- value: 641.03 |
|
|
68 |
hardware: V100 |
|
|
69 |
backend: PyTorch |
|
|
70 |
batch size: 1 |
|
|
71 |
mode: FP32 |
|
|
72 |
resolution: (769,769) |
|
|
73 |
Training Memory (GB): 8.8 |
|
|
74 |
Results: |
|
|
75 |
- Task: Semantic Segmentation |
|
|
76 |
Dataset: Cityscapes |
|
|
77 |
Metrics: |
|
|
78 |
mIoU: 78.88 |
|
|
79 |
mIoU(ms+flip): 80.62 |
|
|
80 |
Config: configs/danet/danet_r50-d8_769x769_40k_cityscapes.py |
|
|
81 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_769x769_40k_cityscapes/danet_r50-d8_769x769_40k_cityscapes_20200530_025703-76681c60.pth |
|
|
82 |
- Name: danet_r101-d8_769x769_40k_cityscapes |
|
|
83 |
In Collection: danet |
|
|
84 |
Metadata: |
|
|
85 |
backbone: R-101-D8 |
|
|
86 |
crop size: (769,769) |
|
|
87 |
lr schd: 40000 |
|
|
88 |
inference time (ms/im): |
|
|
89 |
- value: 934.58 |
|
|
90 |
hardware: V100 |
|
|
91 |
backend: PyTorch |
|
|
92 |
batch size: 1 |
|
|
93 |
mode: FP32 |
|
|
94 |
resolution: (769,769) |
|
|
95 |
Training Memory (GB): 12.8 |
|
|
96 |
Results: |
|
|
97 |
- Task: Semantic Segmentation |
|
|
98 |
Dataset: Cityscapes |
|
|
99 |
Metrics: |
|
|
100 |
mIoU: 79.88 |
|
|
101 |
mIoU(ms+flip): 81.47 |
|
|
102 |
Config: configs/danet/danet_r101-d8_769x769_40k_cityscapes.py |
|
|
103 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_769x769_40k_cityscapes/danet_r101-d8_769x769_40k_cityscapes_20200530_025717-dcb7fd4e.pth |
|
|
104 |
- Name: danet_r50-d8_512x1024_80k_cityscapes |
|
|
105 |
In Collection: danet |
|
|
106 |
Metadata: |
|
|
107 |
backbone: R-50-D8 |
|
|
108 |
crop size: (512,1024) |
|
|
109 |
lr schd: 80000 |
|
|
110 |
Results: |
|
|
111 |
- Task: Semantic Segmentation |
|
|
112 |
Dataset: Cityscapes |
|
|
113 |
Metrics: |
|
|
114 |
mIoU: 79.34 |
|
|
115 |
Config: configs/danet/danet_r50-d8_512x1024_80k_cityscapes.py |
|
|
116 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x1024_80k_cityscapes/danet_r50-d8_512x1024_80k_cityscapes_20200607_133029-2bfa2293.pth |
|
|
117 |
- Name: danet_r101-d8_512x1024_80k_cityscapes |
|
|
118 |
In Collection: danet |
|
|
119 |
Metadata: |
|
|
120 |
backbone: R-101-D8 |
|
|
121 |
crop size: (512,1024) |
|
|
122 |
lr schd: 80000 |
|
|
123 |
Results: |
|
|
124 |
- Task: Semantic Segmentation |
|
|
125 |
Dataset: Cityscapes |
|
|
126 |
Metrics: |
|
|
127 |
mIoU: 80.41 |
|
|
128 |
Config: configs/danet/danet_r101-d8_512x1024_80k_cityscapes.py |
|
|
129 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x1024_80k_cityscapes/danet_r101-d8_512x1024_80k_cityscapes_20200607_132918-955e6350.pth |
|
|
130 |
- Name: danet_r50-d8_769x769_80k_cityscapes |
|
|
131 |
In Collection: danet |
|
|
132 |
Metadata: |
|
|
133 |
backbone: R-50-D8 |
|
|
134 |
crop size: (769,769) |
|
|
135 |
lr schd: 80000 |
|
|
136 |
Results: |
|
|
137 |
- Task: Semantic Segmentation |
|
|
138 |
Dataset: Cityscapes |
|
|
139 |
Metrics: |
|
|
140 |
mIoU: 79.27 |
|
|
141 |
mIoU(ms+flip): 80.96 |
|
|
142 |
Config: configs/danet/danet_r50-d8_769x769_80k_cityscapes.py |
|
|
143 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_769x769_80k_cityscapes/danet_r50-d8_769x769_80k_cityscapes_20200607_132954-495689b4.pth |
|
|
144 |
- Name: danet_r101-d8_769x769_80k_cityscapes |
|
|
145 |
In Collection: danet |
|
|
146 |
Metadata: |
|
|
147 |
backbone: R-101-D8 |
|
|
148 |
crop size: (769,769) |
|
|
149 |
lr schd: 80000 |
|
|
150 |
Results: |
|
|
151 |
- Task: Semantic Segmentation |
|
|
152 |
Dataset: Cityscapes |
|
|
153 |
Metrics: |
|
|
154 |
mIoU: 80.47 |
|
|
155 |
mIoU(ms+flip): 82.02 |
|
|
156 |
Config: configs/danet/danet_r101-d8_769x769_80k_cityscapes.py |
|
|
157 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_769x769_80k_cityscapes/danet_r101-d8_769x769_80k_cityscapes_20200607_132918-f3a929e7.pth |
|
|
158 |
- Name: danet_r50-d8_512x512_80k_ade20k |
|
|
159 |
In Collection: danet |
|
|
160 |
Metadata: |
|
|
161 |
backbone: R-50-D8 |
|
|
162 |
crop size: (512,512) |
|
|
163 |
lr schd: 80000 |
|
|
164 |
inference time (ms/im): |
|
|
165 |
- value: 47.17 |
|
|
166 |
hardware: V100 |
|
|
167 |
backend: PyTorch |
|
|
168 |
batch size: 1 |
|
|
169 |
mode: FP32 |
|
|
170 |
resolution: (512,512) |
|
|
171 |
Training Memory (GB): 11.5 |
|
|
172 |
Results: |
|
|
173 |
- Task: Semantic Segmentation |
|
|
174 |
Dataset: ADE20K |
|
|
175 |
Metrics: |
|
|
176 |
mIoU: 41.66 |
|
|
177 |
mIoU(ms+flip): 42.9 |
|
|
178 |
Config: configs/danet/danet_r50-d8_512x512_80k_ade20k.py |
|
|
179 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x512_80k_ade20k/danet_r50-d8_512x512_80k_ade20k_20200615_015125-edb18e08.pth |
|
|
180 |
- Name: danet_r101-d8_512x512_80k_ade20k |
|
|
181 |
In Collection: danet |
|
|
182 |
Metadata: |
|
|
183 |
backbone: R-101-D8 |
|
|
184 |
crop size: (512,512) |
|
|
185 |
lr schd: 80000 |
|
|
186 |
inference time (ms/im): |
|
|
187 |
- value: 70.52 |
|
|
188 |
hardware: V100 |
|
|
189 |
backend: PyTorch |
|
|
190 |
batch size: 1 |
|
|
191 |
mode: FP32 |
|
|
192 |
resolution: (512,512) |
|
|
193 |
Training Memory (GB): 15.0 |
|
|
194 |
Results: |
|
|
195 |
- Task: Semantic Segmentation |
|
|
196 |
Dataset: ADE20K |
|
|
197 |
Metrics: |
|
|
198 |
mIoU: 43.64 |
|
|
199 |
mIoU(ms+flip): 45.19 |
|
|
200 |
Config: configs/danet/danet_r101-d8_512x512_80k_ade20k.py |
|
|
201 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x512_80k_ade20k/danet_r101-d8_512x512_80k_ade20k_20200615_015126-d0357c73.pth |
|
|
202 |
- Name: danet_r50-d8_512x512_160k_ade20k |
|
|
203 |
In Collection: danet |
|
|
204 |
Metadata: |
|
|
205 |
backbone: R-50-D8 |
|
|
206 |
crop size: (512,512) |
|
|
207 |
lr schd: 160000 |
|
|
208 |
Results: |
|
|
209 |
- Task: Semantic Segmentation |
|
|
210 |
Dataset: ADE20K |
|
|
211 |
Metrics: |
|
|
212 |
mIoU: 42.45 |
|
|
213 |
mIoU(ms+flip): 43.25 |
|
|
214 |
Config: configs/danet/danet_r50-d8_512x512_160k_ade20k.py |
|
|
215 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x512_160k_ade20k/danet_r50-d8_512x512_160k_ade20k_20200616_082340-9cb35dcd.pth |
|
|
216 |
- Name: danet_r101-d8_512x512_160k_ade20k |
|
|
217 |
In Collection: danet |
|
|
218 |
Metadata: |
|
|
219 |
backbone: R-101-D8 |
|
|
220 |
crop size: (512,512) |
|
|
221 |
lr schd: 160000 |
|
|
222 |
Results: |
|
|
223 |
- Task: Semantic Segmentation |
|
|
224 |
Dataset: ADE20K |
|
|
225 |
Metrics: |
|
|
226 |
mIoU: 44.17 |
|
|
227 |
mIoU(ms+flip): 45.02 |
|
|
228 |
Config: configs/danet/danet_r101-d8_512x512_160k_ade20k.py |
|
|
229 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x512_160k_ade20k/danet_r101-d8_512x512_160k_ade20k_20200616_082348-23bf12f9.pth |
|
|
230 |
- Name: danet_r50-d8_512x512_20k_voc12aug |
|
|
231 |
In Collection: danet |
|
|
232 |
Metadata: |
|
|
233 |
backbone: R-50-D8 |
|
|
234 |
crop size: (512,512) |
|
|
235 |
lr schd: 20000 |
|
|
236 |
inference time (ms/im): |
|
|
237 |
- value: 47.76 |
|
|
238 |
hardware: V100 |
|
|
239 |
backend: PyTorch |
|
|
240 |
batch size: 1 |
|
|
241 |
mode: FP32 |
|
|
242 |
resolution: (512,512) |
|
|
243 |
Training Memory (GB): 6.5 |
|
|
244 |
Results: |
|
|
245 |
- Task: Semantic Segmentation |
|
|
246 |
Dataset: Pascal VOC 2012 + Aug |
|
|
247 |
Metrics: |
|
|
248 |
mIoU: 74.45 |
|
|
249 |
mIoU(ms+flip): 75.69 |
|
|
250 |
Config: configs/danet/danet_r50-d8_512x512_20k_voc12aug.py |
|
|
251 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x512_20k_voc12aug/danet_r50-d8_512x512_20k_voc12aug_20200618_070026-9e9e3ab3.pth |
|
|
252 |
- Name: danet_r101-d8_512x512_20k_voc12aug |
|
|
253 |
In Collection: danet |
|
|
254 |
Metadata: |
|
|
255 |
backbone: R-101-D8 |
|
|
256 |
crop size: (512,512) |
|
|
257 |
lr schd: 20000 |
|
|
258 |
inference time (ms/im): |
|
|
259 |
- value: 72.67 |
|
|
260 |
hardware: V100 |
|
|
261 |
backend: PyTorch |
|
|
262 |
batch size: 1 |
|
|
263 |
mode: FP32 |
|
|
264 |
resolution: (512,512) |
|
|
265 |
Training Memory (GB): 9.9 |
|
|
266 |
Results: |
|
|
267 |
- Task: Semantic Segmentation |
|
|
268 |
Dataset: Pascal VOC 2012 + Aug |
|
|
269 |
Metrics: |
|
|
270 |
mIoU: 76.02 |
|
|
271 |
mIoU(ms+flip): 77.23 |
|
|
272 |
Config: configs/danet/danet_r101-d8_512x512_20k_voc12aug.py |
|
|
273 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x512_20k_voc12aug/danet_r101-d8_512x512_20k_voc12aug_20200618_070026-d48d23b2.pth |
|
|
274 |
- Name: danet_r50-d8_512x512_40k_voc12aug |
|
|
275 |
In Collection: danet |
|
|
276 |
Metadata: |
|
|
277 |
backbone: R-50-D8 |
|
|
278 |
crop size: (512,512) |
|
|
279 |
lr schd: 40000 |
|
|
280 |
Results: |
|
|
281 |
- Task: Semantic Segmentation |
|
|
282 |
Dataset: Pascal VOC 2012 + Aug |
|
|
283 |
Metrics: |
|
|
284 |
mIoU: 76.37 |
|
|
285 |
mIoU(ms+flip): 77.29 |
|
|
286 |
Config: configs/danet/danet_r50-d8_512x512_40k_voc12aug.py |
|
|
287 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x512_40k_voc12aug/danet_r50-d8_512x512_40k_voc12aug_20200613_235526-426e3a64.pth |
|
|
288 |
- Name: danet_r101-d8_512x512_40k_voc12aug |
|
|
289 |
In Collection: danet |
|
|
290 |
Metadata: |
|
|
291 |
backbone: R-101-D8 |
|
|
292 |
crop size: (512,512) |
|
|
293 |
lr schd: 40000 |
|
|
294 |
Results: |
|
|
295 |
- Task: Semantic Segmentation |
|
|
296 |
Dataset: Pascal VOC 2012 + Aug |
|
|
297 |
Metrics: |
|
|
298 |
mIoU: 76.51 |
|
|
299 |
mIoU(ms+flip): 77.32 |
|
|
300 |
Config: configs/danet/danet_r101-d8_512x512_40k_voc12aug.py |
|
|
301 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x512_40k_voc12aug/danet_r101-d8_512x512_40k_voc12aug_20200613_223031-788e232a.pth |