Diff of /configs/ccnet/ccnet.yml [000000] .. [4e96d3]

Switch to unified view

a b/configs/ccnet/ccnet.yml
1
Collections:
2
- Name: ccnet
3
  Metadata:
4
    Training Data:
5
    - Cityscapes
6
    - ADE20K
7
    - Pascal VOC 2012 + Aug
8
  Paper:
9
    URL: https://arxiv.org/abs/1811.11721
10
    Title: 'CCNet: Criss-Cross Attention for Semantic Segmentation'
11
  README: configs/ccnet/README.md
12
  Code:
13
    URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/apc_head.py#L111
14
    Version: v0.17.0
15
  Converted From:
16
    Code: https://github.com/speedinghzl/CCNet
17
Models:
18
- Name: ccnet_r50-d8_512x1024_40k_cityscapes
19
  In Collection: ccnet
20
  Metadata:
21
    backbone: R-50-D8
22
    crop size: (512,1024)
23
    lr schd: 40000
24
    inference time (ms/im):
25
    - value: 301.2
26
      hardware: V100
27
      backend: PyTorch
28
      batch size: 1
29
      mode: FP32
30
      resolution: (512,1024)
31
    Training Memory (GB): 6.0
32
  Results:
33
  - Task: Semantic Segmentation
34
    Dataset: Cityscapes
35
    Metrics:
36
      mIoU: 77.76
37
      mIoU(ms+flip): 78.87
38
  Config: configs/ccnet/ccnet_r50-d8_512x1024_40k_cityscapes.py
39
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_512x1024_40k_cityscapes/ccnet_r50-d8_512x1024_40k_cityscapes_20200616_142517-4123f401.pth
40
- Name: ccnet_r101-d8_512x1024_40k_cityscapes
41
  In Collection: ccnet
42
  Metadata:
43
    backbone: R-101-D8
44
    crop size: (512,1024)
45
    lr schd: 40000
46
    inference time (ms/im):
47
    - value: 432.9
48
      hardware: V100
49
      backend: PyTorch
50
      batch size: 1
51
      mode: FP32
52
      resolution: (512,1024)
53
    Training Memory (GB): 9.5
54
  Results:
55
  - Task: Semantic Segmentation
56
    Dataset: Cityscapes
57
    Metrics:
58
      mIoU: 76.35
59
      mIoU(ms+flip): 78.19
60
  Config: configs/ccnet/ccnet_r101-d8_512x1024_40k_cityscapes.py
61
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_512x1024_40k_cityscapes/ccnet_r101-d8_512x1024_40k_cityscapes_20200616_142540-a3b84ba6.pth
62
- Name: ccnet_r50-d8_769x769_40k_cityscapes
63
  In Collection: ccnet
64
  Metadata:
65
    backbone: R-50-D8
66
    crop size: (769,769)
67
    lr schd: 40000
68
    inference time (ms/im):
69
    - value: 699.3
70
      hardware: V100
71
      backend: PyTorch
72
      batch size: 1
73
      mode: FP32
74
      resolution: (769,769)
75
    Training Memory (GB): 6.8
76
  Results:
77
  - Task: Semantic Segmentation
78
    Dataset: Cityscapes
79
    Metrics:
80
      mIoU: 78.46
81
      mIoU(ms+flip): 79.93
82
  Config: configs/ccnet/ccnet_r50-d8_769x769_40k_cityscapes.py
83
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_769x769_40k_cityscapes/ccnet_r50-d8_769x769_40k_cityscapes_20200616_145125-76d11884.pth
84
- Name: ccnet_r101-d8_769x769_40k_cityscapes
85
  In Collection: ccnet
86
  Metadata:
87
    backbone: R-101-D8
88
    crop size: (769,769)
89
    lr schd: 40000
90
    inference time (ms/im):
91
    - value: 990.1
92
      hardware: V100
93
      backend: PyTorch
94
      batch size: 1
95
      mode: FP32
96
      resolution: (769,769)
97
    Training Memory (GB): 10.7
98
  Results:
99
  - Task: Semantic Segmentation
100
    Dataset: Cityscapes
101
    Metrics:
102
      mIoU: 76.94
103
      mIoU(ms+flip): 78.62
104
  Config: configs/ccnet/ccnet_r101-d8_769x769_40k_cityscapes.py
105
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_769x769_40k_cityscapes/ccnet_r101-d8_769x769_40k_cityscapes_20200617_101428-4f57c8d0.pth
106
- Name: ccnet_r50-d8_512x1024_80k_cityscapes
107
  In Collection: ccnet
108
  Metadata:
109
    backbone: R-50-D8
110
    crop size: (512,1024)
111
    lr schd: 80000
112
  Results:
113
  - Task: Semantic Segmentation
114
    Dataset: Cityscapes
115
    Metrics:
116
      mIoU: 79.03
117
      mIoU(ms+flip): 80.16
118
  Config: configs/ccnet/ccnet_r50-d8_512x1024_80k_cityscapes.py
119
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_512x1024_80k_cityscapes/ccnet_r50-d8_512x1024_80k_cityscapes_20200617_010421-869a3423.pth
120
- Name: ccnet_r101-d8_512x1024_80k_cityscapes
121
  In Collection: ccnet
122
  Metadata:
123
    backbone: R-101-D8
124
    crop size: (512,1024)
125
    lr schd: 80000
126
  Results:
127
  - Task: Semantic Segmentation
128
    Dataset: Cityscapes
129
    Metrics:
130
      mIoU: 78.87
131
      mIoU(ms+flip): 79.9
132
  Config: configs/ccnet/ccnet_r101-d8_512x1024_80k_cityscapes.py
133
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_512x1024_80k_cityscapes/ccnet_r101-d8_512x1024_80k_cityscapes_20200617_203935-ffae8917.pth
134
- Name: ccnet_r50-d8_769x769_80k_cityscapes
135
  In Collection: ccnet
136
  Metadata:
137
    backbone: R-50-D8
138
    crop size: (769,769)
139
    lr schd: 80000
140
  Results:
141
  - Task: Semantic Segmentation
142
    Dataset: Cityscapes
143
    Metrics:
144
      mIoU: 79.29
145
      mIoU(ms+flip): 81.08
146
  Config: configs/ccnet/ccnet_r50-d8_769x769_80k_cityscapes.py
147
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_769x769_80k_cityscapes/ccnet_r50-d8_769x769_80k_cityscapes_20200617_010421-73eed8ca.pth
148
- Name: ccnet_r101-d8_769x769_80k_cityscapes
149
  In Collection: ccnet
150
  Metadata:
151
    backbone: R-101-D8
152
    crop size: (769,769)
153
    lr schd: 80000
154
  Results:
155
  - Task: Semantic Segmentation
156
    Dataset: Cityscapes
157
    Metrics:
158
      mIoU: 79.45
159
      mIoU(ms+flip): 80.66
160
  Config: configs/ccnet/ccnet_r101-d8_769x769_80k_cityscapes.py
161
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_769x769_80k_cityscapes/ccnet_r101-d8_769x769_80k_cityscapes_20200618_011502-ad3cd481.pth
162
- Name: ccnet_r50-d8_512x512_80k_ade20k
163
  In Collection: ccnet
164
  Metadata:
165
    backbone: R-50-D8
166
    crop size: (512,512)
167
    lr schd: 80000
168
    inference time (ms/im):
169
    - value: 47.87
170
      hardware: V100
171
      backend: PyTorch
172
      batch size: 1
173
      mode: FP32
174
      resolution: (512,512)
175
    Training Memory (GB): 8.8
176
  Results:
177
  - Task: Semantic Segmentation
178
    Dataset: ADE20K
179
    Metrics:
180
      mIoU: 41.78
181
      mIoU(ms+flip): 42.98
182
  Config: configs/ccnet/ccnet_r50-d8_512x512_80k_ade20k.py
183
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_512x512_80k_ade20k/ccnet_r50-d8_512x512_80k_ade20k_20200615_014848-aa37f61e.pth
184
- Name: ccnet_r101-d8_512x512_80k_ade20k
185
  In Collection: ccnet
186
  Metadata:
187
    backbone: R-101-D8
188
    crop size: (512,512)
189
    lr schd: 80000
190
    inference time (ms/im):
191
    - value: 70.87
192
      hardware: V100
193
      backend: PyTorch
194
      batch size: 1
195
      mode: FP32
196
      resolution: (512,512)
197
    Training Memory (GB): 12.2
198
  Results:
199
  - Task: Semantic Segmentation
200
    Dataset: ADE20K
201
    Metrics:
202
      mIoU: 43.97
203
      mIoU(ms+flip): 45.13
204
  Config: configs/ccnet/ccnet_r101-d8_512x512_80k_ade20k.py
205
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_512x512_80k_ade20k/ccnet_r101-d8_512x512_80k_ade20k_20200615_014848-1f4929a3.pth
206
- Name: ccnet_r50-d8_512x512_160k_ade20k
207
  In Collection: ccnet
208
  Metadata:
209
    backbone: R-50-D8
210
    crop size: (512,512)
211
    lr schd: 160000
212
  Results:
213
  - Task: Semantic Segmentation
214
    Dataset: ADE20K
215
    Metrics:
216
      mIoU: 42.08
217
      mIoU(ms+flip): 43.13
218
  Config: configs/ccnet/ccnet_r50-d8_512x512_160k_ade20k.py
219
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_512x512_160k_ade20k/ccnet_r50-d8_512x512_160k_ade20k_20200616_084435-7c97193b.pth
220
- Name: ccnet_r101-d8_512x512_160k_ade20k
221
  In Collection: ccnet
222
  Metadata:
223
    backbone: R-101-D8
224
    crop size: (512,512)
225
    lr schd: 160000
226
  Results:
227
  - Task: Semantic Segmentation
228
    Dataset: ADE20K
229
    Metrics:
230
      mIoU: 43.71
231
      mIoU(ms+flip): 45.04
232
  Config: configs/ccnet/ccnet_r101-d8_512x512_160k_ade20k.py
233
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_512x512_160k_ade20k/ccnet_r101-d8_512x512_160k_ade20k_20200616_000644-e849e007.pth
234
- Name: ccnet_r50-d8_512x512_20k_voc12aug
235
  In Collection: ccnet
236
  Metadata:
237
    backbone: R-50-D8
238
    crop size: (512,512)
239
    lr schd: 20000
240
    inference time (ms/im):
241
    - value: 48.9
242
      hardware: V100
243
      backend: PyTorch
244
      batch size: 1
245
      mode: FP32
246
      resolution: (512,512)
247
    Training Memory (GB): 6.0
248
  Results:
249
  - Task: Semantic Segmentation
250
    Dataset: Pascal VOC 2012 + Aug
251
    Metrics:
252
      mIoU: 76.17
253
      mIoU(ms+flip): 77.51
254
  Config: configs/ccnet/ccnet_r50-d8_512x512_20k_voc12aug.py
255
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_512x512_20k_voc12aug/ccnet_r50-d8_512x512_20k_voc12aug_20200617_193212-fad81784.pth
256
- Name: ccnet_r101-d8_512x512_20k_voc12aug
257
  In Collection: ccnet
258
  Metadata:
259
    backbone: R-101-D8
260
    crop size: (512,512)
261
    lr schd: 20000
262
    inference time (ms/im):
263
    - value: 73.31
264
      hardware: V100
265
      backend: PyTorch
266
      batch size: 1
267
      mode: FP32
268
      resolution: (512,512)
269
    Training Memory (GB): 9.5
270
  Results:
271
  - Task: Semantic Segmentation
272
    Dataset: Pascal VOC 2012 + Aug
273
    Metrics:
274
      mIoU: 77.27
275
      mIoU(ms+flip): 79.02
276
  Config: configs/ccnet/ccnet_r101-d8_512x512_20k_voc12aug.py
277
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_512x512_20k_voc12aug/ccnet_r101-d8_512x512_20k_voc12aug_20200617_193212-0007b61d.pth
278
- Name: ccnet_r50-d8_512x512_40k_voc12aug
279
  In Collection: ccnet
280
  Metadata:
281
    backbone: R-50-D8
282
    crop size: (512,512)
283
    lr schd: 40000
284
  Results:
285
  - Task: Semantic Segmentation
286
    Dataset: Pascal VOC 2012 + Aug
287
    Metrics:
288
      mIoU: 75.96
289
      mIoU(ms+flip): 77.04
290
  Config: configs/ccnet/ccnet_r50-d8_512x512_40k_voc12aug.py
291
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_512x512_40k_voc12aug/ccnet_r50-d8_512x512_40k_voc12aug_20200613_232127-c2a15f02.pth
292
- Name: ccnet_r101-d8_512x512_40k_voc12aug
293
  In Collection: ccnet
294
  Metadata:
295
    backbone: R-101-D8
296
    crop size: (512,512)
297
    lr schd: 40000
298
  Results:
299
  - Task: Semantic Segmentation
300
    Dataset: Pascal VOC 2012 + Aug
301
    Metrics:
302
      mIoU: 77.87
303
      mIoU(ms+flip): 78.9
304
  Config: configs/ccnet/ccnet_r101-d8_512x512_40k_voc12aug.py
305
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_512x512_40k_voc12aug/ccnet_r101-d8_512x512_40k_voc12aug_20200613_232127-c30da577.pth