|
a |
|
b/configs/bisenetv2/bisenetv2.yml |
|
|
1 |
Collections: |
|
|
2 |
- Name: bisenetv2 |
|
|
3 |
Metadata: |
|
|
4 |
Training Data: |
|
|
5 |
- Cityscapes |
|
|
6 |
Paper: |
|
|
7 |
URL: https://arxiv.org/abs/2004.02147 |
|
|
8 |
Title: 'Bisenet v2: Bilateral Network with Guided Aggregation for Real-time Semantic |
|
|
9 |
Segmentation' |
|
|
10 |
README: configs/bisenetv2/README.md |
|
|
11 |
Code: |
|
|
12 |
URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/backbones/bisenetv2.py#L545 |
|
|
13 |
Version: v0.18.0 |
|
|
14 |
Models: |
|
|
15 |
- Name: bisenetv2_fcn_4x4_1024x1024_160k_cityscapes |
|
|
16 |
In Collection: bisenetv2 |
|
|
17 |
Metadata: |
|
|
18 |
backbone: BiSeNetV2 |
|
|
19 |
crop size: (1024,1024) |
|
|
20 |
lr schd: 160000 |
|
|
21 |
inference time (ms/im): |
|
|
22 |
- value: 31.48 |
|
|
23 |
hardware: V100 |
|
|
24 |
backend: PyTorch |
|
|
25 |
batch size: 1 |
|
|
26 |
mode: FP32 |
|
|
27 |
resolution: (1024,1024) |
|
|
28 |
Training Memory (GB): 7.64 |
|
|
29 |
Results: |
|
|
30 |
- Task: Semantic Segmentation |
|
|
31 |
Dataset: Cityscapes |
|
|
32 |
Metrics: |
|
|
33 |
mIoU: 73.21 |
|
|
34 |
mIoU(ms+flip): 75.74 |
|
|
35 |
Config: configs/bisenetv2/bisenetv2_fcn_4x4_1024x1024_160k_cityscapes.py |
|
|
36 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_4x4_1024x1024_160k_cityscapes/bisenetv2_fcn_4x4_1024x1024_160k_cityscapes_20210902_015551-bcf10f09.pth |
|
|
37 |
- Name: bisenetv2_fcn_ohem_4x4_1024x1024_160k_cityscapes |
|
|
38 |
In Collection: bisenetv2 |
|
|
39 |
Metadata: |
|
|
40 |
backbone: BiSeNetV2 |
|
|
41 |
crop size: (1024,1024) |
|
|
42 |
lr schd: 160000 |
|
|
43 |
Training Memory (GB): 7.64 |
|
|
44 |
Results: |
|
|
45 |
- Task: Semantic Segmentation |
|
|
46 |
Dataset: Cityscapes |
|
|
47 |
Metrics: |
|
|
48 |
mIoU: 73.57 |
|
|
49 |
mIoU(ms+flip): 75.8 |
|
|
50 |
Config: configs/bisenetv2/bisenetv2_fcn_ohem_4x4_1024x1024_160k_cityscapes.py |
|
|
51 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_ohem_4x4_1024x1024_160k_cityscapes/bisenetv2_fcn_ohem_4x4_1024x1024_160k_cityscapes_20210902_112947-5f8103b4.pth |
|
|
52 |
- Name: bisenetv2_fcn_4x8_1024x1024_160k_cityscapes |
|
|
53 |
In Collection: bisenetv2 |
|
|
54 |
Metadata: |
|
|
55 |
backbone: BiSeNetV2 |
|
|
56 |
crop size: (1024,1024) |
|
|
57 |
lr schd: 160000 |
|
|
58 |
Training Memory (GB): 15.05 |
|
|
59 |
Results: |
|
|
60 |
- Task: Semantic Segmentation |
|
|
61 |
Dataset: Cityscapes |
|
|
62 |
Metrics: |
|
|
63 |
mIoU: 75.76 |
|
|
64 |
mIoU(ms+flip): 77.79 |
|
|
65 |
Config: configs/bisenetv2/bisenetv2_fcn_4x8_1024x1024_160k_cityscapes.py |
|
|
66 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_4x8_1024x1024_160k_cityscapes/bisenetv2_fcn_4x8_1024x1024_160k_cityscapes_20210903_000032-e1a2eed6.pth |
|
|
67 |
- Name: bisenetv2_fcn_fp16_4x4_1024x1024_160k_cityscapes |
|
|
68 |
In Collection: bisenetv2 |
|
|
69 |
Metadata: |
|
|
70 |
backbone: BiSeNetV2 |
|
|
71 |
crop size: (1024,1024) |
|
|
72 |
lr schd: 160000 |
|
|
73 |
inference time (ms/im): |
|
|
74 |
- value: 27.29 |
|
|
75 |
hardware: V100 |
|
|
76 |
backend: PyTorch |
|
|
77 |
batch size: 1 |
|
|
78 |
mode: FP16 |
|
|
79 |
resolution: (1024,1024) |
|
|
80 |
Training Memory (GB): 5.77 |
|
|
81 |
Results: |
|
|
82 |
- Task: Semantic Segmentation |
|
|
83 |
Dataset: Cityscapes |
|
|
84 |
Metrics: |
|
|
85 |
mIoU: 73.07 |
|
|
86 |
mIoU(ms+flip): 75.13 |
|
|
87 |
Config: configs/bisenetv2/bisenetv2_fcn_fp16_4x4_1024x1024_160k_cityscapes.py |
|
|
88 |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_fp16_4x4_1024x1024_160k_cityscapes/bisenetv2_fcn_fp16_4x4_1024x1024_160k_cityscapes_20210902_045942-b979777b.pth |