Switch to unified view

a b/configs/bisenetv2/bisenetv2.yml
1
Collections:
2
- Name: bisenetv2
3
  Metadata:
4
    Training Data:
5
    - Cityscapes
6
  Paper:
7
    URL: https://arxiv.org/abs/2004.02147
8
    Title: 'Bisenet v2: Bilateral Network with Guided Aggregation for Real-time Semantic
9
      Segmentation'
10
  README: configs/bisenetv2/README.md
11
  Code:
12
    URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/backbones/bisenetv2.py#L545
13
    Version: v0.18.0
14
Models:
15
- Name: bisenetv2_fcn_4x4_1024x1024_160k_cityscapes
16
  In Collection: bisenetv2
17
  Metadata:
18
    backbone: BiSeNetV2
19
    crop size: (1024,1024)
20
    lr schd: 160000
21
    inference time (ms/im):
22
    - value: 31.48
23
      hardware: V100
24
      backend: PyTorch
25
      batch size: 1
26
      mode: FP32
27
      resolution: (1024,1024)
28
    Training Memory (GB): 7.64
29
  Results:
30
  - Task: Semantic Segmentation
31
    Dataset: Cityscapes
32
    Metrics:
33
      mIoU: 73.21
34
      mIoU(ms+flip): 75.74
35
  Config: configs/bisenetv2/bisenetv2_fcn_4x4_1024x1024_160k_cityscapes.py
36
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_4x4_1024x1024_160k_cityscapes/bisenetv2_fcn_4x4_1024x1024_160k_cityscapes_20210902_015551-bcf10f09.pth
37
- Name: bisenetv2_fcn_ohem_4x4_1024x1024_160k_cityscapes
38
  In Collection: bisenetv2
39
  Metadata:
40
    backbone: BiSeNetV2
41
    crop size: (1024,1024)
42
    lr schd: 160000
43
    Training Memory (GB): 7.64
44
  Results:
45
  - Task: Semantic Segmentation
46
    Dataset: Cityscapes
47
    Metrics:
48
      mIoU: 73.57
49
      mIoU(ms+flip): 75.8
50
  Config: configs/bisenetv2/bisenetv2_fcn_ohem_4x4_1024x1024_160k_cityscapes.py
51
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_ohem_4x4_1024x1024_160k_cityscapes/bisenetv2_fcn_ohem_4x4_1024x1024_160k_cityscapes_20210902_112947-5f8103b4.pth
52
- Name: bisenetv2_fcn_4x8_1024x1024_160k_cityscapes
53
  In Collection: bisenetv2
54
  Metadata:
55
    backbone: BiSeNetV2
56
    crop size: (1024,1024)
57
    lr schd: 160000
58
    Training Memory (GB): 15.05
59
  Results:
60
  - Task: Semantic Segmentation
61
    Dataset: Cityscapes
62
    Metrics:
63
      mIoU: 75.76
64
      mIoU(ms+flip): 77.79
65
  Config: configs/bisenetv2/bisenetv2_fcn_4x8_1024x1024_160k_cityscapes.py
66
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_4x8_1024x1024_160k_cityscapes/bisenetv2_fcn_4x8_1024x1024_160k_cityscapes_20210903_000032-e1a2eed6.pth
67
- Name: bisenetv2_fcn_fp16_4x4_1024x1024_160k_cityscapes
68
  In Collection: bisenetv2
69
  Metadata:
70
    backbone: BiSeNetV2
71
    crop size: (1024,1024)
72
    lr schd: 160000
73
    inference time (ms/im):
74
    - value: 27.29
75
      hardware: V100
76
      backend: PyTorch
77
      batch size: 1
78
      mode: FP16
79
      resolution: (1024,1024)
80
    Training Memory (GB): 5.77
81
  Results:
82
  - Task: Semantic Segmentation
83
    Dataset: Cityscapes
84
    Metrics:
85
      mIoU: 73.07
86
      mIoU(ms+flip): 75.13
87
  Config: configs/bisenetv2/bisenetv2_fcn_fp16_4x4_1024x1024_160k_cityscapes.py
88
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_fp16_4x4_1024x1024_160k_cityscapes/bisenetv2_fcn_fp16_4x4_1024x1024_160k_cityscapes_20210902_045942-b979777b.pth