--- a +++ b/configs/bisenetv2/bisenetv2.yml @@ -0,0 +1,88 @@ +Collections: +- Name: bisenetv2 + Metadata: + Training Data: + - Cityscapes + Paper: + URL: https://arxiv.org/abs/2004.02147 + Title: 'Bisenet v2: Bilateral Network with Guided Aggregation for Real-time Semantic + Segmentation' + README: configs/bisenetv2/README.md + Code: + URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/backbones/bisenetv2.py#L545 + Version: v0.18.0 +Models: +- Name: bisenetv2_fcn_4x4_1024x1024_160k_cityscapes + In Collection: bisenetv2 + Metadata: + backbone: BiSeNetV2 + crop size: (1024,1024) + lr schd: 160000 + inference time (ms/im): + - value: 31.48 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (1024,1024) + Training Memory (GB): 7.64 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 73.21 + mIoU(ms+flip): 75.74 + Config: configs/bisenetv2/bisenetv2_fcn_4x4_1024x1024_160k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_4x4_1024x1024_160k_cityscapes/bisenetv2_fcn_4x4_1024x1024_160k_cityscapes_20210902_015551-bcf10f09.pth +- Name: bisenetv2_fcn_ohem_4x4_1024x1024_160k_cityscapes + In Collection: bisenetv2 + Metadata: + backbone: BiSeNetV2 + crop size: (1024,1024) + lr schd: 160000 + Training Memory (GB): 7.64 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 73.57 + mIoU(ms+flip): 75.8 + Config: configs/bisenetv2/bisenetv2_fcn_ohem_4x4_1024x1024_160k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_ohem_4x4_1024x1024_160k_cityscapes/bisenetv2_fcn_ohem_4x4_1024x1024_160k_cityscapes_20210902_112947-5f8103b4.pth +- Name: bisenetv2_fcn_4x8_1024x1024_160k_cityscapes + In Collection: bisenetv2 + Metadata: + backbone: BiSeNetV2 + crop size: (1024,1024) + lr schd: 160000 + Training Memory (GB): 15.05 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 75.76 + mIoU(ms+flip): 77.79 + Config: configs/bisenetv2/bisenetv2_fcn_4x8_1024x1024_160k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_4x8_1024x1024_160k_cityscapes/bisenetv2_fcn_4x8_1024x1024_160k_cityscapes_20210903_000032-e1a2eed6.pth +- Name: bisenetv2_fcn_fp16_4x4_1024x1024_160k_cityscapes + In Collection: bisenetv2 + Metadata: + backbone: BiSeNetV2 + crop size: (1024,1024) + lr schd: 160000 + inference time (ms/im): + - value: 27.29 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP16 + resolution: (1024,1024) + Training Memory (GB): 5.77 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 73.07 + mIoU(ms+flip): 75.13 + Config: configs/bisenetv2/bisenetv2_fcn_fp16_4x4_1024x1024_160k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_fp16_4x4_1024x1024_160k_cityscapes/bisenetv2_fcn_fp16_4x4_1024x1024_160k_cityscapes_20210902_045942-b979777b.pth