Switch to unified view

a b/configs/bisenetv1/bisenetv1.yml
1
Collections:
2
- Name: bisenetv1
3
  Metadata:
4
    Training Data:
5
    - Cityscapes
6
    - COCO-Stuff 164k
7
  Paper:
8
    URL: https://arxiv.org/abs/1808.00897
9
    Title: 'BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentation'
10
  README: configs/bisenetv1/README.md
11
  Code:
12
    URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/backbones/bisenetv1.py#L266
13
    Version: v0.18.0
14
  Converted From:
15
    Code: https://github.com/ycszen/TorchSeg/tree/master/model/bisenet
16
Models:
17
- Name: bisenetv1_r18-d32_4x4_1024x1024_160k_cityscapes
18
  In Collection: bisenetv1
19
  Metadata:
20
    backbone: R-18-D32
21
    crop size: (1024,1024)
22
    lr schd: 160000
23
    inference time (ms/im):
24
    - value: 31.48
25
      hardware: V100
26
      backend: PyTorch
27
      batch size: 1
28
      mode: FP32
29
      resolution: (1024,1024)
30
    Training Memory (GB): 5.69
31
  Results:
32
  - Task: Semantic Segmentation
33
    Dataset: Cityscapes
34
    Metrics:
35
      mIoU: 74.44
36
      mIoU(ms+flip): 77.05
37
  Config: configs/bisenetv1/bisenetv1_r18-d32_4x4_1024x1024_160k_cityscapes.py
38
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_4x4_1024x1024_160k_cityscapes/bisenetv1_r18-d32_4x4_1024x1024_160k_cityscapes_20210922_172239-c55e78e2.pth
39
- Name: bisenetv1_r18-d32_in1k-pre_4x4_1024x1024_160k_cityscapes
40
  In Collection: bisenetv1
41
  Metadata:
42
    backbone: R-18-D32
43
    crop size: (1024,1024)
44
    lr schd: 160000
45
    inference time (ms/im):
46
    - value: 31.48
47
      hardware: V100
48
      backend: PyTorch
49
      batch size: 1
50
      mode: FP32
51
      resolution: (1024,1024)
52
    Training Memory (GB): 5.69
53
  Results:
54
  - Task: Semantic Segmentation
55
    Dataset: Cityscapes
56
    Metrics:
57
      mIoU: 74.37
58
      mIoU(ms+flip): 76.91
59
  Config: configs/bisenetv1/bisenetv1_r18-d32_in1k-pre_4x4_1024x1024_160k_cityscapes.py
60
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_in1k-pre_4x4_1024x1024_160k_cityscapes/bisenetv1_r18-d32_in1k-pre_4x4_1024x1024_160k_cityscapes_20210905_220251-8ba80eff.pth
61
- Name: bisenetv1_r18-d32_in1k-pre_4x8_1024x1024_160k_cityscapes
62
  In Collection: bisenetv1
63
  Metadata:
64
    backbone: R-18-D32
65
    crop size: (1024,1024)
66
    lr schd: 160000
67
    inference time (ms/im):
68
    - value: 31.48
69
      hardware: V100
70
      backend: PyTorch
71
      batch size: 1
72
      mode: FP32
73
      resolution: (1024,1024)
74
    Training Memory (GB): 11.17
75
  Results:
76
  - Task: Semantic Segmentation
77
    Dataset: Cityscapes
78
    Metrics:
79
      mIoU: 75.16
80
      mIoU(ms+flip): 77.24
81
  Config: configs/bisenetv1/bisenetv1_r18-d32_in1k-pre_4x8_1024x1024_160k_cityscapes.py
82
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_in1k-pre_4x8_1024x1024_160k_cityscapes/bisenetv1_r18-d32_in1k-pre_4x8_1024x1024_160k_cityscapes_20210905_220322-bb8db75f.pth
83
- Name: bisenetv1_r50-d32_4x4_1024x1024_160k_cityscapes
84
  In Collection: bisenetv1
85
  Metadata:
86
    backbone: R-50-D32
87
    crop size: (1024,1024)
88
    lr schd: 160000
89
    inference time (ms/im):
90
    - value: 129.7
91
      hardware: V100
92
      backend: PyTorch
93
      batch size: 1
94
      mode: FP32
95
      resolution: (1024,1024)
96
    Training Memory (GB): 15.39
97
  Results:
98
  - Task: Semantic Segmentation
99
    Dataset: Cityscapes
100
    Metrics:
101
      mIoU: 76.92
102
      mIoU(ms+flip): 78.87
103
  Config: configs/bisenetv1/bisenetv1_r50-d32_4x4_1024x1024_160k_cityscapes.py
104
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r50-d32_4x4_1024x1024_160k_cityscapes/bisenetv1_r50-d32_4x4_1024x1024_160k_cityscapes_20210923_222639-7b28a2a6.pth
105
- Name: bisenetv1_r50-d32_in1k-pre_4x4_1024x1024_160k_cityscapes
106
  In Collection: bisenetv1
107
  Metadata:
108
    backbone: R-50-D32
109
    crop size: (1024,1024)
110
    lr schd: 160000
111
    inference time (ms/im):
112
    - value: 129.7
113
      hardware: V100
114
      backend: PyTorch
115
      batch size: 1
116
      mode: FP32
117
      resolution: (1024,1024)
118
    Training Memory (GB): 15.39
119
  Results:
120
  - Task: Semantic Segmentation
121
    Dataset: Cityscapes
122
    Metrics:
123
      mIoU: 77.68
124
      mIoU(ms+flip): 79.57
125
  Config: configs/bisenetv1/bisenetv1_r50-d32_in1k-pre_4x4_1024x1024_160k_cityscapes.py
126
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r50-d32_in1k-pre_4x4_1024x1024_160k_cityscapes/bisenetv1_r50-d32_in1k-pre_4x4_1024x1024_160k_cityscapes_20210917_234628-8b304447.pth
127
- Name: bisenetv1_r18-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k
128
  In Collection: bisenetv1
129
  Metadata:
130
    backbone: R-18-D32
131
    crop size: (512,512)
132
    lr schd: 160000
133
  Results:
134
  - Task: Semantic Segmentation
135
    Dataset: COCO-Stuff 164k
136
    Metrics:
137
      mIoU: 25.45
138
      mIoU(ms+flip): 26.15
139
  Config: configs/bisenetv1/bisenetv1_r18-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k.py
140
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r18-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211022_054328-046aa2f2.pth
141
- Name: bisenetv1_r18-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k
142
  In Collection: bisenetv1
143
  Metadata:
144
    backbone: R-18-D32
145
    crop size: (512,512)
146
    lr schd: 160000
147
    inference time (ms/im):
148
    - value: 13.47
149
      hardware: V100
150
      backend: PyTorch
151
      batch size: 1
152
      mode: FP32
153
      resolution: (512,512)
154
    Training Memory (GB): 6.33
155
  Results:
156
  - Task: Semantic Segmentation
157
    Dataset: COCO-Stuff 164k
158
    Metrics:
159
      mIoU: 28.55
160
      mIoU(ms+flip): 29.26
161
  Config: configs/bisenetv1/bisenetv1_r18-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k.py
162
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r18-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211023_013100-f700dbf7.pth
163
- Name: bisenetv1_r50-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k
164
  In Collection: bisenetv1
165
  Metadata:
166
    backbone: R-50-D32
167
    crop size: (512,512)
168
    lr schd: 160000
169
  Results:
170
  - Task: Semantic Segmentation
171
    Dataset: COCO-Stuff 164k
172
    Metrics:
173
      mIoU: 29.82
174
      mIoU(ms+flip): 30.33
175
  Config: configs/bisenetv1/bisenetv1_r50-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k.py
176
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r50-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r50-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211101_040616-d2bb0df4.pth
177
- Name: bisenetv1_r50-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k
178
  In Collection: bisenetv1
179
  Metadata:
180
    backbone: R-50-D32
181
    crop size: (512,512)
182
    lr schd: 160000
183
    inference time (ms/im):
184
    - value: 30.67
185
      hardware: V100
186
      backend: PyTorch
187
      batch size: 1
188
      mode: FP32
189
      resolution: (512,512)
190
    Training Memory (GB): 9.28
191
  Results:
192
  - Task: Semantic Segmentation
193
    Dataset: COCO-Stuff 164k
194
    Metrics:
195
      mIoU: 34.88
196
      mIoU(ms+flip): 35.37
197
  Config: configs/bisenetv1/bisenetv1_r50-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k.py
198
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r50-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r50-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211101_181932-66747911.pth
199
- Name: bisenetv1_r101-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k
200
  In Collection: bisenetv1
201
  Metadata:
202
    backbone: R-101-D32
203
    crop size: (512,512)
204
    lr schd: 160000
205
  Results:
206
  - Task: Semantic Segmentation
207
    Dataset: COCO-Stuff 164k
208
    Metrics:
209
      mIoU: 31.14
210
      mIoU(ms+flip): 31.76
211
  Config: configs/bisenetv1/bisenetv1_r101-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k.py
212
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r101-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r101-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211102_164147-c6b32c3b.pth
213
- Name: bisenetv1_r101-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k
214
  In Collection: bisenetv1
215
  Metadata:
216
    backbone: R-101-D32
217
    crop size: (512,512)
218
    lr schd: 160000
219
    inference time (ms/im):
220
    - value: 39.6
221
      hardware: V100
222
      backend: PyTorch
223
      batch size: 1
224
      mode: FP32
225
      resolution: (512,512)
226
    Training Memory (GB): 10.36
227
  Results:
228
  - Task: Semantic Segmentation
229
    Dataset: COCO-Stuff 164k
230
    Metrics:
231
      mIoU: 37.38
232
      mIoU(ms+flip): 37.99
233
  Config: configs/bisenetv1/bisenetv1_r101-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k.py
234
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r101-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r101-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211101_225220-28c8f092.pth