--- a +++ b/configs/bisenetv1/bisenetv1.yml @@ -0,0 +1,234 @@ +Collections: +- Name: bisenetv1 + Metadata: + Training Data: + - Cityscapes + - COCO-Stuff 164k + Paper: + URL: https://arxiv.org/abs/1808.00897 + Title: 'BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentation' + README: configs/bisenetv1/README.md + Code: + URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/backbones/bisenetv1.py#L266 + Version: v0.18.0 + Converted From: + Code: https://github.com/ycszen/TorchSeg/tree/master/model/bisenet +Models: +- Name: bisenetv1_r18-d32_4x4_1024x1024_160k_cityscapes + In Collection: bisenetv1 + Metadata: + backbone: R-18-D32 + crop size: (1024,1024) + lr schd: 160000 + inference time (ms/im): + - value: 31.48 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (1024,1024) + Training Memory (GB): 5.69 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 74.44 + mIoU(ms+flip): 77.05 + Config: configs/bisenetv1/bisenetv1_r18-d32_4x4_1024x1024_160k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_4x4_1024x1024_160k_cityscapes/bisenetv1_r18-d32_4x4_1024x1024_160k_cityscapes_20210922_172239-c55e78e2.pth +- Name: bisenetv1_r18-d32_in1k-pre_4x4_1024x1024_160k_cityscapes + In Collection: bisenetv1 + Metadata: + backbone: R-18-D32 + crop size: (1024,1024) + lr schd: 160000 + inference time (ms/im): + - value: 31.48 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (1024,1024) + Training Memory (GB): 5.69 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 74.37 + mIoU(ms+flip): 76.91 + Config: configs/bisenetv1/bisenetv1_r18-d32_in1k-pre_4x4_1024x1024_160k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_in1k-pre_4x4_1024x1024_160k_cityscapes/bisenetv1_r18-d32_in1k-pre_4x4_1024x1024_160k_cityscapes_20210905_220251-8ba80eff.pth +- Name: bisenetv1_r18-d32_in1k-pre_4x8_1024x1024_160k_cityscapes + In Collection: bisenetv1 + Metadata: + backbone: R-18-D32 + crop size: (1024,1024) + lr schd: 160000 + inference time (ms/im): + - value: 31.48 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (1024,1024) + Training Memory (GB): 11.17 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 75.16 + mIoU(ms+flip): 77.24 + Config: configs/bisenetv1/bisenetv1_r18-d32_in1k-pre_4x8_1024x1024_160k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_in1k-pre_4x8_1024x1024_160k_cityscapes/bisenetv1_r18-d32_in1k-pre_4x8_1024x1024_160k_cityscapes_20210905_220322-bb8db75f.pth +- Name: bisenetv1_r50-d32_4x4_1024x1024_160k_cityscapes + In Collection: bisenetv1 + Metadata: + backbone: R-50-D32 + crop size: (1024,1024) + lr schd: 160000 + inference time (ms/im): + - value: 129.7 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (1024,1024) + Training Memory (GB): 15.39 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 76.92 + mIoU(ms+flip): 78.87 + Config: configs/bisenetv1/bisenetv1_r50-d32_4x4_1024x1024_160k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r50-d32_4x4_1024x1024_160k_cityscapes/bisenetv1_r50-d32_4x4_1024x1024_160k_cityscapes_20210923_222639-7b28a2a6.pth +- Name: bisenetv1_r50-d32_in1k-pre_4x4_1024x1024_160k_cityscapes + In Collection: bisenetv1 + Metadata: + backbone: R-50-D32 + crop size: (1024,1024) + lr schd: 160000 + inference time (ms/im): + - value: 129.7 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (1024,1024) + Training Memory (GB): 15.39 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.68 + mIoU(ms+flip): 79.57 + Config: configs/bisenetv1/bisenetv1_r50-d32_in1k-pre_4x4_1024x1024_160k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r50-d32_in1k-pre_4x4_1024x1024_160k_cityscapes/bisenetv1_r50-d32_in1k-pre_4x4_1024x1024_160k_cityscapes_20210917_234628-8b304447.pth +- Name: bisenetv1_r18-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k + In Collection: bisenetv1 + Metadata: + backbone: R-18-D32 + crop size: (512,512) + lr schd: 160000 + Results: + - Task: Semantic Segmentation + Dataset: COCO-Stuff 164k + Metrics: + mIoU: 25.45 + mIoU(ms+flip): 26.15 + Config: configs/bisenetv1/bisenetv1_r18-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r18-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211022_054328-046aa2f2.pth +- Name: bisenetv1_r18-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k + In Collection: bisenetv1 + Metadata: + backbone: R-18-D32 + crop size: (512,512) + lr schd: 160000 + inference time (ms/im): + - value: 13.47 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,512) + Training Memory (GB): 6.33 + Results: + - Task: Semantic Segmentation + Dataset: COCO-Stuff 164k + Metrics: + mIoU: 28.55 + mIoU(ms+flip): 29.26 + Config: configs/bisenetv1/bisenetv1_r18-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r18-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211023_013100-f700dbf7.pth +- Name: bisenetv1_r50-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k + In Collection: bisenetv1 + Metadata: + backbone: R-50-D32 + crop size: (512,512) + lr schd: 160000 + Results: + - Task: Semantic Segmentation + Dataset: COCO-Stuff 164k + Metrics: + mIoU: 29.82 + mIoU(ms+flip): 30.33 + Config: configs/bisenetv1/bisenetv1_r50-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r50-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r50-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211101_040616-d2bb0df4.pth +- Name: bisenetv1_r50-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k + In Collection: bisenetv1 + Metadata: + backbone: R-50-D32 + crop size: (512,512) + lr schd: 160000 + inference time (ms/im): + - value: 30.67 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,512) + Training Memory (GB): 9.28 + Results: + - Task: Semantic Segmentation + Dataset: COCO-Stuff 164k + Metrics: + mIoU: 34.88 + mIoU(ms+flip): 35.37 + Config: configs/bisenetv1/bisenetv1_r50-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r50-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r50-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211101_181932-66747911.pth +- Name: bisenetv1_r101-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k + In Collection: bisenetv1 + Metadata: + backbone: R-101-D32 + crop size: (512,512) + lr schd: 160000 + Results: + - Task: Semantic Segmentation + Dataset: COCO-Stuff 164k + Metrics: + mIoU: 31.14 + mIoU(ms+flip): 31.76 + Config: configs/bisenetv1/bisenetv1_r101-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r101-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r101-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211102_164147-c6b32c3b.pth +- Name: bisenetv1_r101-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k + In Collection: bisenetv1 + Metadata: + backbone: R-101-D32 + crop size: (512,512) + lr schd: 160000 + inference time (ms/im): + - value: 39.6 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,512) + Training Memory (GB): 10.36 + Results: + - Task: Semantic Segmentation + Dataset: COCO-Stuff 164k + Metrics: + mIoU: 37.38 + mIoU(ms+flip): 37.99 + Config: configs/bisenetv1/bisenetv1_r101-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r101-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r101-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211101_225220-28c8f092.pth