Diff of /configs/apcnet/apcnet.yml [000000] .. [4e96d3]

Switch to unified view

a b/configs/apcnet/apcnet.yml
1
Collections:
2
- Name: apcnet
3
  Metadata:
4
    Training Data:
5
    - Cityscapes
6
    - ADE20K
7
  Paper:
8
    URL: https://openaccess.thecvf.com/content_CVPR_2019/html/He_Adaptive_Pyramid_Context_Network_for_Semantic_Segmentation_CVPR_2019_paper.html
9
    Title: Adaptive Pyramid Context Network for Semantic Segmentation
10
  README: configs/apcnet/README.md
11
  Code:
12
    URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/apc_head.py#L111
13
    Version: v0.17.0
14
  Converted From:
15
    Code: https://github.com/Junjun2016/APCNet
16
Models:
17
- Name: apcnet_r50-d8_512x1024_40k_cityscapes
18
  In Collection: apcnet
19
  Metadata:
20
    backbone: R-50-D8
21
    crop size: (512,1024)
22
    lr schd: 40000
23
    inference time (ms/im):
24
    - value: 280.11
25
      hardware: V100
26
      backend: PyTorch
27
      batch size: 1
28
      mode: FP32
29
      resolution: (512,1024)
30
    Training Memory (GB): 7.7
31
  Results:
32
  - Task: Semantic Segmentation
33
    Dataset: Cityscapes
34
    Metrics:
35
      mIoU: 78.02
36
      mIoU(ms+flip): 79.26
37
  Config: configs/apcnet/apcnet_r50-d8_512x1024_40k_cityscapes.py
38
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x1024_40k_cityscapes/apcnet_r50-d8_512x1024_40k_cityscapes_20201214_115717-5e88fa33.pth
39
- Name: apcnet_r101-d8_512x1024_40k_cityscapes
40
  In Collection: apcnet
41
  Metadata:
42
    backbone: R-101-D8
43
    crop size: (512,1024)
44
    lr schd: 40000
45
    inference time (ms/im):
46
    - value: 465.12
47
      hardware: V100
48
      backend: PyTorch
49
      batch size: 1
50
      mode: FP32
51
      resolution: (512,1024)
52
    Training Memory (GB): 11.2
53
  Results:
54
  - Task: Semantic Segmentation
55
    Dataset: Cityscapes
56
    Metrics:
57
      mIoU: 79.08
58
      mIoU(ms+flip): 80.34
59
  Config: configs/apcnet/apcnet_r101-d8_512x1024_40k_cityscapes.py
60
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x1024_40k_cityscapes/apcnet_r101-d8_512x1024_40k_cityscapes_20201214_115716-abc9d111.pth
61
- Name: apcnet_r50-d8_769x769_40k_cityscapes
62
  In Collection: apcnet
63
  Metadata:
64
    backbone: R-50-D8
65
    crop size: (769,769)
66
    lr schd: 40000
67
    inference time (ms/im):
68
    - value: 657.89
69
      hardware: V100
70
      backend: PyTorch
71
      batch size: 1
72
      mode: FP32
73
      resolution: (769,769)
74
    Training Memory (GB): 8.7
75
  Results:
76
  - Task: Semantic Segmentation
77
    Dataset: Cityscapes
78
    Metrics:
79
      mIoU: 77.89
80
      mIoU(ms+flip): 79.75
81
  Config: configs/apcnet/apcnet_r50-d8_769x769_40k_cityscapes.py
82
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_769x769_40k_cityscapes/apcnet_r50-d8_769x769_40k_cityscapes_20201214_115717-2a2628d7.pth
83
- Name: apcnet_r101-d8_769x769_40k_cityscapes
84
  In Collection: apcnet
85
  Metadata:
86
    backbone: R-101-D8
87
    crop size: (769,769)
88
    lr schd: 40000
89
    inference time (ms/im):
90
    - value: 970.87
91
      hardware: V100
92
      backend: PyTorch
93
      batch size: 1
94
      mode: FP32
95
      resolution: (769,769)
96
    Training Memory (GB): 12.7
97
  Results:
98
  - Task: Semantic Segmentation
99
    Dataset: Cityscapes
100
    Metrics:
101
      mIoU: 77.96
102
      mIoU(ms+flip): 79.24
103
  Config: configs/apcnet/apcnet_r101-d8_769x769_40k_cityscapes.py
104
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_769x769_40k_cityscapes/apcnet_r101-d8_769x769_40k_cityscapes_20201214_115718-b650de90.pth
105
- Name: apcnet_r50-d8_512x1024_80k_cityscapes
106
  In Collection: apcnet
107
  Metadata:
108
    backbone: R-50-D8
109
    crop size: (512,1024)
110
    lr schd: 80000
111
  Results:
112
  - Task: Semantic Segmentation
113
    Dataset: Cityscapes
114
    Metrics:
115
      mIoU: 78.96
116
      mIoU(ms+flip): 79.94
117
  Config: configs/apcnet/apcnet_r50-d8_512x1024_80k_cityscapes.py
118
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x1024_80k_cityscapes/apcnet_r50-d8_512x1024_80k_cityscapes_20201214_115716-987f51e3.pth
119
- Name: apcnet_r101-d8_512x1024_80k_cityscapes
120
  In Collection: apcnet
121
  Metadata:
122
    backbone: R-101-D8
123
    crop size: (512,1024)
124
    lr schd: 80000
125
  Results:
126
  - Task: Semantic Segmentation
127
    Dataset: Cityscapes
128
    Metrics:
129
      mIoU: 79.64
130
      mIoU(ms+flip): 80.61
131
  Config: configs/apcnet/apcnet_r101-d8_512x1024_80k_cityscapes.py
132
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x1024_80k_cityscapes/apcnet_r101-d8_512x1024_80k_cityscapes_20201214_115705-b1ff208a.pth
133
- Name: apcnet_r50-d8_769x769_80k_cityscapes
134
  In Collection: apcnet
135
  Metadata:
136
    backbone: R-50-D8
137
    crop size: (769,769)
138
    lr schd: 80000
139
  Results:
140
  - Task: Semantic Segmentation
141
    Dataset: Cityscapes
142
    Metrics:
143
      mIoU: 78.79
144
      mIoU(ms+flip): 80.35
145
  Config: configs/apcnet/apcnet_r50-d8_769x769_80k_cityscapes.py
146
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_769x769_80k_cityscapes/apcnet_r50-d8_769x769_80k_cityscapes_20201214_115718-7ea9fa12.pth
147
- Name: apcnet_r101-d8_769x769_80k_cityscapes
148
  In Collection: apcnet
149
  Metadata:
150
    backbone: R-101-D8
151
    crop size: (769,769)
152
    lr schd: 80000
153
  Results:
154
  - Task: Semantic Segmentation
155
    Dataset: Cityscapes
156
    Metrics:
157
      mIoU: 78.45
158
      mIoU(ms+flip): 79.91
159
  Config: configs/apcnet/apcnet_r101-d8_769x769_80k_cityscapes.py
160
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_769x769_80k_cityscapes/apcnet_r101-d8_769x769_80k_cityscapes_20201214_115716-a7fbc2ab.pth
161
- Name: apcnet_r50-d8_512x512_80k_ade20k
162
  In Collection: apcnet
163
  Metadata:
164
    backbone: R-50-D8
165
    crop size: (512,512)
166
    lr schd: 80000
167
    inference time (ms/im):
168
    - value: 50.99
169
      hardware: V100
170
      backend: PyTorch
171
      batch size: 1
172
      mode: FP32
173
      resolution: (512,512)
174
    Training Memory (GB): 10.1
175
  Results:
176
  - Task: Semantic Segmentation
177
    Dataset: ADE20K
178
    Metrics:
179
      mIoU: 42.2
180
      mIoU(ms+flip): 43.3
181
  Config: configs/apcnet/apcnet_r50-d8_512x512_80k_ade20k.py
182
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x512_80k_ade20k/apcnet_r50-d8_512x512_80k_ade20k_20201214_115705-a8626293.pth
183
- Name: apcnet_r101-d8_512x512_80k_ade20k
184
  In Collection: apcnet
185
  Metadata:
186
    backbone: R-101-D8
187
    crop size: (512,512)
188
    lr schd: 80000
189
    inference time (ms/im):
190
    - value: 76.34
191
      hardware: V100
192
      backend: PyTorch
193
      batch size: 1
194
      mode: FP32
195
      resolution: (512,512)
196
    Training Memory (GB): 13.6
197
  Results:
198
  - Task: Semantic Segmentation
199
    Dataset: ADE20K
200
    Metrics:
201
      mIoU: 45.54
202
      mIoU(ms+flip): 46.65
203
  Config: configs/apcnet/apcnet_r101-d8_512x512_80k_ade20k.py
204
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x512_80k_ade20k/apcnet_r101-d8_512x512_80k_ade20k_20201214_115704-c656c3fb.pth
205
- Name: apcnet_r50-d8_512x512_160k_ade20k
206
  In Collection: apcnet
207
  Metadata:
208
    backbone: R-50-D8
209
    crop size: (512,512)
210
    lr schd: 160000
211
  Results:
212
  - Task: Semantic Segmentation
213
    Dataset: ADE20K
214
    Metrics:
215
      mIoU: 43.4
216
      mIoU(ms+flip): 43.94
217
  Config: configs/apcnet/apcnet_r50-d8_512x512_160k_ade20k.py
218
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x512_160k_ade20k/apcnet_r50-d8_512x512_160k_ade20k_20201214_115706-25fb92c2.pth
219
- Name: apcnet_r101-d8_512x512_160k_ade20k
220
  In Collection: apcnet
221
  Metadata:
222
    backbone: R-101-D8
223
    crop size: (512,512)
224
    lr schd: 160000
225
  Results:
226
  - Task: Semantic Segmentation
227
    Dataset: ADE20K
228
    Metrics:
229
      mIoU: 45.41
230
      mIoU(ms+flip): 46.63
231
  Config: configs/apcnet/apcnet_r101-d8_512x512_160k_ade20k.py
232
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x512_160k_ade20k/apcnet_r101-d8_512x512_160k_ade20k_20201214_115705-73f9a8d7.pth