--- a +++ b/configs/ann/ann.yml @@ -0,0 +1,305 @@ +Collections: +- Name: ann + Metadata: + Training Data: + - Cityscapes + - ADE20K + - Pascal VOC 2012 + Aug + Paper: + URL: https://arxiv.org/abs/1908.07678 + Title: Asymmetric Non-local Neural Networks for Semantic Segmentation + README: configs/ann/README.md + Code: + URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ann_head.py#L185 + Version: v0.17.0 + Converted From: + Code: https://github.com/MendelXu/ANN +Models: +- Name: ann_r50-d8_512x1024_40k_cityscapes + In Collection: ann + Metadata: + backbone: R-50-D8 + crop size: (512,1024) + lr schd: 40000 + inference time (ms/im): + - value: 269.54 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,1024) + Training Memory (GB): 6.0 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.4 + mIoU(ms+flip): 78.57 + Config: configs/ann/ann_r50-d8_512x1024_40k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x1024_40k_cityscapes/ann_r50-d8_512x1024_40k_cityscapes_20200605_095211-049fc292.pth +- Name: ann_r101-d8_512x1024_40k_cityscapes + In Collection: ann + Metadata: + backbone: R-101-D8 + crop size: (512,1024) + lr schd: 40000 + inference time (ms/im): + - value: 392.16 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,1024) + Training Memory (GB): 9.5 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 76.55 + mIoU(ms+flip): 78.85 + Config: configs/ann/ann_r101-d8_512x1024_40k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x1024_40k_cityscapes/ann_r101-d8_512x1024_40k_cityscapes_20200605_095243-adf6eece.pth +- Name: ann_r50-d8_769x769_40k_cityscapes + In Collection: ann + Metadata: + backbone: R-50-D8 + crop size: (769,769) + lr schd: 40000 + inference time (ms/im): + - value: 588.24 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (769,769) + Training Memory (GB): 6.8 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.89 + mIoU(ms+flip): 80.46 + Config: configs/ann/ann_r50-d8_769x769_40k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_769x769_40k_cityscapes/ann_r50-d8_769x769_40k_cityscapes_20200530_025712-2b46b04d.pth +- Name: ann_r101-d8_769x769_40k_cityscapes + In Collection: ann + Metadata: + backbone: R-101-D8 + crop size: (769,769) + lr schd: 40000 + inference time (ms/im): + - value: 869.57 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (769,769) + Training Memory (GB): 10.7 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 79.32 + mIoU(ms+flip): 80.94 + Config: configs/ann/ann_r101-d8_769x769_40k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_769x769_40k_cityscapes/ann_r101-d8_769x769_40k_cityscapes_20200530_025720-059bff28.pth +- Name: ann_r50-d8_512x1024_80k_cityscapes + In Collection: ann + Metadata: + backbone: R-50-D8 + crop size: (512,1024) + lr schd: 80000 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.34 + mIoU(ms+flip): 78.65 + Config: configs/ann/ann_r50-d8_512x1024_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x1024_80k_cityscapes/ann_r50-d8_512x1024_80k_cityscapes_20200607_101911-5a9ad545.pth +- Name: ann_r101-d8_512x1024_80k_cityscapes + In Collection: ann + Metadata: + backbone: R-101-D8 + crop size: (512,1024) + lr schd: 80000 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 77.14 + mIoU(ms+flip): 78.81 + Config: configs/ann/ann_r101-d8_512x1024_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x1024_80k_cityscapes/ann_r101-d8_512x1024_80k_cityscapes_20200607_013728-aceccc6e.pth +- Name: ann_r50-d8_769x769_80k_cityscapes + In Collection: ann + Metadata: + backbone: R-50-D8 + crop size: (769,769) + lr schd: 80000 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.88 + mIoU(ms+flip): 80.57 + Config: configs/ann/ann_r50-d8_769x769_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_769x769_80k_cityscapes/ann_r50-d8_769x769_80k_cityscapes_20200607_044426-cc7ff323.pth +- Name: ann_r101-d8_769x769_80k_cityscapes + In Collection: ann + Metadata: + backbone: R-101-D8 + crop size: (769,769) + lr schd: 80000 + Results: + - Task: Semantic Segmentation + Dataset: Cityscapes + Metrics: + mIoU: 78.8 + mIoU(ms+flip): 80.34 + Config: configs/ann/ann_r101-d8_769x769_80k_cityscapes.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_769x769_80k_cityscapes/ann_r101-d8_769x769_80k_cityscapes_20200607_013713-a9d4be8d.pth +- Name: ann_r50-d8_512x512_80k_ade20k + In Collection: ann + Metadata: + backbone: R-50-D8 + crop size: (512,512) + lr schd: 80000 + inference time (ms/im): + - value: 47.6 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,512) + Training Memory (GB): 9.1 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 41.01 + mIoU(ms+flip): 42.3 + Config: configs/ann/ann_r50-d8_512x512_80k_ade20k.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x512_80k_ade20k/ann_r50-d8_512x512_80k_ade20k_20200615_014818-26f75e11.pth +- Name: ann_r101-d8_512x512_80k_ade20k + In Collection: ann + Metadata: + backbone: R-101-D8 + crop size: (512,512) + lr schd: 80000 + inference time (ms/im): + - value: 70.82 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,512) + Training Memory (GB): 12.5 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 42.94 + mIoU(ms+flip): 44.18 + Config: configs/ann/ann_r101-d8_512x512_80k_ade20k.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x512_80k_ade20k/ann_r101-d8_512x512_80k_ade20k_20200615_014818-c0153543.pth +- Name: ann_r50-d8_512x512_160k_ade20k + In Collection: ann + Metadata: + backbone: R-50-D8 + crop size: (512,512) + lr schd: 160000 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 41.74 + mIoU(ms+flip): 42.62 + Config: configs/ann/ann_r50-d8_512x512_160k_ade20k.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x512_160k_ade20k/ann_r50-d8_512x512_160k_ade20k_20200615_231733-892247bc.pth +- Name: ann_r101-d8_512x512_160k_ade20k + In Collection: ann + Metadata: + backbone: R-101-D8 + crop size: (512,512) + lr schd: 160000 + Results: + - Task: Semantic Segmentation + Dataset: ADE20K + Metrics: + mIoU: 42.94 + mIoU(ms+flip): 44.06 + Config: configs/ann/ann_r101-d8_512x512_160k_ade20k.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x512_160k_ade20k/ann_r101-d8_512x512_160k_ade20k_20200615_231733-955eb1ec.pth +- Name: ann_r50-d8_512x512_20k_voc12aug + In Collection: ann + Metadata: + backbone: R-50-D8 + crop size: (512,512) + lr schd: 20000 + inference time (ms/im): + - value: 47.8 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,512) + Training Memory (GB): 6.0 + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 74.86 + mIoU(ms+flip): 76.13 + Config: configs/ann/ann_r50-d8_512x512_20k_voc12aug.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x512_20k_voc12aug/ann_r50-d8_512x512_20k_voc12aug_20200617_222246-dfcb1c62.pth +- Name: ann_r101-d8_512x512_20k_voc12aug + In Collection: ann + Metadata: + backbone: R-101-D8 + crop size: (512,512) + lr schd: 20000 + inference time (ms/im): + - value: 71.74 + hardware: V100 + backend: PyTorch + batch size: 1 + mode: FP32 + resolution: (512,512) + Training Memory (GB): 9.5 + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 77.47 + mIoU(ms+flip): 78.7 + Config: configs/ann/ann_r101-d8_512x512_20k_voc12aug.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x512_20k_voc12aug/ann_r101-d8_512x512_20k_voc12aug_20200617_222246-2fad0042.pth +- Name: ann_r50-d8_512x512_40k_voc12aug + In Collection: ann + Metadata: + backbone: R-50-D8 + crop size: (512,512) + lr schd: 40000 + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 76.56 + mIoU(ms+flip): 77.51 + Config: configs/ann/ann_r50-d8_512x512_40k_voc12aug.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x512_40k_voc12aug/ann_r50-d8_512x512_40k_voc12aug_20200613_231314-b5dac322.pth +- Name: ann_r101-d8_512x512_40k_voc12aug + In Collection: ann + Metadata: + backbone: R-101-D8 + crop size: (512,512) + lr schd: 40000 + Results: + - Task: Semantic Segmentation + Dataset: Pascal VOC 2012 + Aug + Metrics: + mIoU: 76.7 + mIoU(ms+flip): 78.06 + Config: configs/ann/ann_r101-d8_512x512_40k_voc12aug.py + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x512_40k_voc12aug/ann_r101-d8_512x512_40k_voc12aug_20200613_231314-bd205bbe.pth