1681 lines (1680 with data), 74.1 kB
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# GI Tract Segmentation Competition"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Load And Prepare"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Imports"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"ExecuteTime": {
"end_time": "2022-06-28T03:46:47.438209Z",
"start_time": "2022-06-28T03:46:44.722879Z"
}
},
"outputs": [],
"source": [
"from fastai.vision.all import *\n",
"import matplotlib.patches as mpatches\n",
"import albumentations as A\n",
"import cv2\n",
"import pynvml\n",
"from scipy.spatial.distance import directed_hausdorff\n",
"import timm\n",
"import segmentation_models_pytorch as smp\n",
"\n",
"\n",
"# !cp kaggle.json /home/kgeorgio/.kaggle\n",
"# !kaggle competitions download -c uw-madison-gi-tract-image-segmentation\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load CSV"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"ExecuteTime": {
"end_time": "2022-06-28T03:46:47.672193Z",
"start_time": "2022-06-28T03:46:47.439755Z"
},
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"train_df = pd.read_csv('dataset/train.csv', low_memory=False)\n",
"train_df = train_df.pivot(index='id', columns='class', values='segmentation').reset_index()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"ExecuteTime": {
"end_time": "2022-06-28T03:46:47.739865Z",
"start_time": "2022-06-28T03:46:47.730425Z"
},
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th>class</th>\n",
" <th>id</th>\n",
" <th>large_bowel</th>\n",
" <th>small_bowel</th>\n",
" <th>stomach</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>case101_day20_slice_0001</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>case101_day20_slice_0002</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>case101_day20_slice_0003</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>case101_day20_slice_0004</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>case101_day20_slice_0005</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
"class id large_bowel small_bowel stomach\n",
"0 case101_day20_slice_0001 NaN NaN NaN\n",
"1 case101_day20_slice_0002 NaN NaN NaN\n",
"2 case101_day20_slice_0003 NaN NaN NaN\n",
"3 case101_day20_slice_0004 NaN NaN NaN\n",
"4 case101_day20_slice_0005 NaN NaN NaN"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"train_df.head()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"ExecuteTime": {
"end_time": "2022-06-28T03:46:47.950258Z",
"start_time": "2022-06-28T03:46:47.742286Z"
},
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"dataset/train/case101/case101_day26/scans/slice_0121_266_266_1.50_1.50.png\n",
"dataset/train/case101/case101_day26/scans/slice_0081_266_266_1.50_1.50.png\n",
"dataset/train/case101/case101_day26/scans/slice_0065_266_266_1.50_1.50.png\n",
"dataset/train/case101/case101_day26/scans/slice_0068_266_266_1.50_1.50.png\n",
"dataset/train/case101/case101_day26/scans/slice_0059_266_266_1.50_1.50.png\n",
"dataset/train/case101/case101_day26/scans/slice_0064_266_266_1.50_1.50.png\n",
"dataset/train/case101/case101_day26/scans/slice_0002_266_266_1.50_1.50.png\n",
"dataset/train/case101/case101_day26/scans/slice_0088_266_266_1.50_1.50.png\n",
"dataset/train/case101/case101_day26/scans/slice_0098_266_266_1.50_1.50.png\n",
"dataset/train/case101/case101_day26/scans/slice_0074_266_266_1.50_1.50.png\n",
"dataset/train/case101/case101_day26/scans/slice_0021_266_266_1.50_1.50.png\n",
"...\n",
"And 38486 more lines.\n"
]
}
],
"source": [
"path = Path('dataset/train')\n",
"\n",
"fnames = get_image_files(path)\n",
"\n",
"for ind, file_name in enumerate(fnames):\n",
" print(file_name)\n",
" if ind>9:\n",
" print('...')\n",
" break\n",
"print(f\"And {len(fnames)-10} more lines.\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Functions"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"def get_slice_id(fname):\n",
" return fname.parts[3] + '_' + fname.parts[5][:10]\n",
"\n",
"\n",
"def rle_decode(mask_rle, shape, color=1):\n",
" \"\"\" TBD\n",
"\n",
" Args:\n",
" mask_rle (str): run-length as string formated (start length)\n",
" shape (tuple of ints): (height,width) of array to return \n",
"\n",
" Returns: \n",
" Mask (np.array)\n",
" - 1 indicating mask\n",
" - 0 indicating background\n",
"\n",
" \"\"\"\n",
" # Split the string by space, then convert it into a integer array\n",
" s = np.array(mask_rle.split(), dtype=int)\n",
"\n",
" # Every even value is the start, every odd value is the \"run\" length\n",
" starts = s[0::2] - 1\n",
" lengths = s[1::2]\n",
" ends = starts + lengths\n",
"\n",
" # The image image is actually flattened since RLE is a 1D \"run\"\n",
" if len(shape) == 3:\n",
" h, w, d = shape\n",
" img = np.zeros((h * w, d), dtype=np.float32)\n",
" else:\n",
" h, w = shape\n",
" img = np.zeros((h * w,), dtype=np.float32)\n",
"\n",
" # The color here is actually just any integer you want!\n",
" for lo, hi in zip(starts, ends):\n",
" img[lo: hi] = color\n",
"\n",
" # Don't forget to change the image back to the original shape\n",
" return img.reshape(shape)\n",
"\n",
"\n",
"def label_func(fname):\n",
" # First we need to get the slice row\n",
" slice_id = get_slice_id(fname)\n",
" slice_row = train_df.query('id == @slice_id')\n",
"\n",
" # Then we need to extract the slice width and height which are provided in the fname last part\n",
" # Typically the height is the first part of a dimension, but for some reason the slices have\n",
" # widths provided first\n",
" w, h = map(lambda x: int(x), fname.parts[-1].split('_')[2:4])\n",
"\n",
" # Create mask array (It needs to have 3 channels but fastai will only keep the first one anyways)\n",
" mask = np.zeros((h, w, 3), dtype=np.uint8)\n",
"\n",
" # If the segmentation mask is str\n",
" # Each mask should have it's own code (color) where fastai will use them for identification\n",
" if isinstance(slice_row['large_bowel'].item(), str):\n",
" mask[:, :, 0] = rle_decode(slice_row['large_bowel'].item(), shape=(h, w), color=255)\n",
"\n",
" if isinstance(slice_row['small_bowel'].item(), str):\n",
" mask[:, :, 1] = rle_decode(slice_row['small_bowel'].item(), shape=(h, w), color=255)\n",
"\n",
" if isinstance(slice_row['stomach'].item(), str):\n",
" mask[:, :, 2] = rle_decode(slice_row['stomach'].item(), shape=(h, w), color=255)\n",
"\n",
" return mask\n",
"\n",
"\n",
"# This was the code available in fastai\n",
"@ToTensor\n",
"def encodes(self, o: PILMask): return o._tensor_cls(image2tensor(o)[0])\n",
"\n",
"\n",
"# And this is how we customize it to suit our needs\n",
"@ToTensor\n",
"def encodes(self, o: PILMask): return o._tensor_cls(image2tensor(o))\n",
"\n",
"\n",
"@typedispatch\n",
"def show_batch(x: TensorImage, y: TensorMask, samples, ctxs=None, max_n=6, nrows=None, ncols=2,\n",
" figsize=None, **kwargs):\n",
" if figsize is None: figsize = (ncols * 3, max_n // ncols * 3)\n",
" if ctxs is None: ctxs = get_grid(max_n, nrows=nrows, ncols=ncols, figsize=figsize)\n",
" for i, ctx in enumerate(ctxs):\n",
" x_i = x[i] / x[i].max()\n",
" show_image(x_i, ctx=ctx, cmap='gray', **kwargs)\n",
" show_image(y[i], ctx=ctx, cmap='Spectral_r', alpha=0.35, **kwargs)\n",
" red_patch = mpatches.Patch(color='red', label='large_bowel')\n",
" green_patch = mpatches.Patch(color='green', label='small_bowel')\n",
" blue_patch = mpatches.Patch(color='blue', label='stomach')\n",
" ctx.legend(handles=[red_patch, green_patch, blue_patch], fontsize=figsize[0] / 2)\n",
"\n",
"\n",
"def pad_img(img, up_size=None):\n",
" if up_size is None:\n",
" return img\n",
" shape0 = np.array(img.shape[:2])\n",
" resize = np.array(up_size)\n",
" if np.any(shape0 != resize):\n",
" diff = resize - shape0\n",
" pad0 = diff[0]\n",
" pad1 = diff[1]\n",
" pady = [pad0 // 2, pad0 // 2 + pad0 % 2]\n",
" padx = [pad1 // 2, pad1 // 2 + pad1 % 2]\n",
" img = np.pad(img, [pady, padx])\n",
" img = img.reshape((*resize))\n",
" return img\n",
"\n",
"\n",
"def unpad_img(img, up_size, org_size):\n",
" shape0 = np.array(org_size)\n",
" resize = np.array(up_size)\n",
" if np.any(shape0 != resize):\n",
" diff = resize - shape0\n",
" pad0 = diff[0]\n",
" pad1 = diff[1]\n",
" pady = [pad0 // 2, pad0 // 2 + pad0 % 2]\n",
" padx = [pad1 // 2, pad1 // 2 + pad1 % 2]\n",
" img = img[pady[0]:-pady[1], padx[0]:-padx[1], :]\n",
" img = img.reshape((*shape0, 3))\n",
" return img\n",
"\n",
"\n",
"def load_image(fname, up_size=None):\n",
" img = np.array(Image.open(fname))\n",
" img = np.interp(img, [np.min(img), np.max(img)], [0, 255])\n",
" return pad_img(img, up_size)\n",
"\n",
"\n",
"def get_25D_image(row, up_size=None):\n",
" if up_size:\n",
" imgs = np.zeros((*up_size, len(row['fnames'])))\n",
" else:\n",
" imgs = np.zeros((row['slice_h'], row['slice_w'], len(row['fnames'])))\n",
"\n",
" for i, fname in enumerate(row['fnames']):\n",
" img = load_image(fname, up_size)\n",
" imgs[..., i] += img\n",
" return imgs.astype(np.uint8)\n",
"\n",
"\n",
"def get_mask(row, up_size=None):\n",
" if up_size:\n",
" mask = np.zeros((*up_size, 3))\n",
" else:\n",
" mask = np.zeros((row['slice_h'], row['slice_w'], 3))\n",
"\n",
" if isinstance(row['large_bowel'], str):\n",
" mask[..., 0] += pad_img(\n",
" rle_decode(row['large_bowel'], shape=(row['slice_h'], row['slice_w']), color=255), up_size)\n",
" if isinstance(row['small_bowel'], str):\n",
" mask[..., 1] += pad_img(\n",
" rle_decode(row['small_bowel'], shape=(row['slice_h'], row['slice_w']), color=255), up_size)\n",
" if isinstance(row['stomach'], str):\n",
" mask[..., 2] += pad_img(\n",
" rle_decode(row['stomach'], shape=(row['slice_h'], row['slice_w']), color=255), up_size)\n",
"\n",
" return mask.astype(np.uint8)\n",
"\n",
"\n",
"def get_train_aug(img_size, crop=0.9, p=0.4):\n",
" crop_size = round(img_size[0] * crop)\n",
" return A.Compose([\n",
" A.RandomCrop(height=crop_size, width=crop_size, always_apply=True),\n",
" A.HorizontalFlip(p=p),\n",
" A.OneOf([\n",
" A.GridDistortion(num_steps=5, distort_limit=0.05, p=1.0),\n",
" A.ElasticTransform(alpha=1, sigma=50, alpha_affine=50, p=1.0)\n",
" ], p=p),\n",
" A.CoarseDropout(\n",
" max_holes=8, min_holes=8,\n",
" max_height=crop_size // 10, max_width=crop_size // 10,\n",
" min_height=4, min_width=4, mask_fill_value=0, p=0.2 * p),\n",
" A.ShiftScaleRotate(\n",
" shift_limit=0.0625, scale_limit=0.2, rotate_limit=25,\n",
" interpolation=cv2.INTER_AREA, p=p),\n",
" A.HorizontalFlip(p=0.5 * p),\n",
" A.OneOf([\n",
" A.MotionBlur(p=0.2 * p),\n",
" A.MedianBlur(blur_limit=3, p=0.1 * p),\n",
" A.Blur(blur_limit=3, p=0.1 * p),\n",
" ], p=0.2 * p),\n",
" A.GaussNoise(var_limit=0.001, p=0.2 * p),\n",
" A.OneOf([\n",
" A.OpticalDistortion(p=0.3 * p),\n",
" A.GridDistortion(p=0.1 * p),\n",
" A.PiecewiseAffine(p=0.3 * p),\n",
" ], p=0.2 * p),\n",
" A.OneOf([\n",
" A.Sharpen(p=0.2 * p),\n",
" A.Emboss(p=0.2 * p),\n",
" A.RandomBrightnessContrast(p=0.2 * p),\n",
" ]),\n",
" ])\n",
"\n",
"\n",
"def get_test_aug(img_size, crop=0.9):\n",
" crop_size = round(crop * img_size[0])\n",
" return A.Compose([\n",
" A.CenterCrop(height=crop_size, width=crop_size),\n",
" ])\n",
"\n",
"\n",
"class AlbumentationsTransform(ItemTransform, RandTransform):\n",
" split_idx, order = None, 2\n",
"\n",
" def __init__(self, train_aug, valid_aug):\n",
" store_attr()\n",
"\n",
" def before_call(self, b, split_idx):\n",
" self.idx = split_idx\n",
"\n",
" def encodes(self, x):\n",
" if len(x) > 1:\n",
" img, mask = x\n",
" if self.idx == 0:\n",
" aug = self.train_aug(image=np.array(img), mask=np.array(mask))\n",
" else:\n",
" aug = self.valid_aug(image=np.array(img), mask=np.array(mask))\n",
" return PILImage.create(aug[\"image\"]), PILMask.create(aug[\"mask\"])\n",
" else:\n",
" img = x[0]\n",
" aug = self.valid_aug(image=np.array(img))\n",
" return PILImage.create(aug[\"image\"])\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Preprocess"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Split name metada into different columns"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"ExecuteTime": {
"end_time": "2022-06-28T03:46:48.134095Z",
"start_time": "2022-06-28T03:46:47.951449Z"
},
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"train_df['partial_fname'] = train_df.id\n",
"fname_df = pd.DataFrame({'partial_fname': [f'{fname.parts[-3]}_slice_{fname.parts[-1][6:10]}' for fname in fnames],\n",
" 'fname': fnames})\n",
"\n",
"train_df = train_df.merge(fname_df, on='partial_fname').drop('partial_fname', axis=1)\n",
"\n",
"train_df['case_id'] = train_df.id.apply(lambda x: x.split('_')[0])\n",
"train_df['day_num'] = train_df.id.apply(lambda x: x.split('_')[1])\n",
"\n",
"train_df['slice_w'] = train_df[\"fname\"].apply(lambda x: int(str(x)[:-4].rsplit(\"_\",4)[1]))\n",
"train_df['slice_h'] = train_df[\"fname\"].apply(lambda x: int(str(x)[:-4].rsplit(\"_\",4)[2]))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Add Fnames"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"ExecuteTime": {
"end_time": "2022-06-28T03:46:48.186750Z",
"start_time": "2022-06-28T03:46:48.135151Z"
},
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"channels = 3\n",
"stride = 2\n",
"for j, i in enumerate(range(-1*(channels-channels//2-1), channels//2+1)):\n",
" method = 'ffill'\n",
" if i <= 0: method = 'bfill'\n",
" train_df[f'fname_{j:02}'] = train_df.groupby(['case_id', 'day_num'])['fname'].shift(stride*-i).fillna(method=method)\n",
" \n",
"train_df['fnames'] = train_df[[f'fname_{j:02d}' for j in range(channels)]].values.tolist()"
]
},
{
"cell_type": "markdown",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"source": [
"# Training"
]
},
{
"cell_type": "markdown",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"source": [
"## Metrics"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"ExecuteTime": {
"end_time": "2022-06-28T03:46:49.086943Z",
"start_time": "2022-06-28T03:46:49.086930Z"
}
},
"outputs": [],
"source": [
"def dice_coeff_adj(inp, targ):\n",
" inp = np.where(sigmoid(inp).cpu().detach().numpy() > 0.5, 1, 0)\n",
" targ = targ.cpu().detach().numpy()\n",
" eps = 1e-5\n",
" dice_scores = []\n",
" for i in range(targ.shape[0]):\n",
" dice_i = []\n",
" for j in range(targ.shape[1]):\n",
" if inp[i, j].sum() == targ[i, j].sum() == 0:\n",
" continue\n",
" I = (targ[i, j] * inp[i, j]).sum()\n",
" U = targ[i, j].sum() + inp[i, j].sum()\n",
" dice_i.append((2.*I)/(U+eps))\n",
" if dice_i:\n",
" dice_scores.append(np.mean(dice_i))\n",
" \n",
" if dice_scores:\n",
" return np.mean(dice_scores)\n",
" else:\n",
" return 0\n",
" \n",
" \n",
"def hd_dist_per_slice(inp, targ, seed): \n",
" inp = np.argwhere(inp) / np.array(inp.shape)\n",
" targ = np.argwhere(targ) / np.array(targ.shape)\n",
" haussdorf_dist = 1 - directed_hausdorff(inp, targ, seed)[0]\n",
" return haussdorf_dist if haussdorf_dist > 0 else 0\n",
"\n",
"def hd_dist_adj(inp, targ, seed=42):\n",
" inp = np.where(sigmoid(inp).cpu().detach().numpy() > 0.5, 1, 0)\n",
" targ = targ.cpu().detach().numpy()\n",
" hd_scores = []\n",
" for i in range(targ.shape[0]):\n",
" hd_i = []\n",
" for j in range(targ.shape[1]):\n",
" if inp[i, j].sum() == targ[i, j].sum() == 0:\n",
" continue\n",
" hd_i.append(hd_dist_per_slice(inp[i, j], targ[i, j], seed))\n",
" if hd_i:\n",
" hd_scores.append(np.mean(hd_i))\n",
" if hd_scores:\n",
" return np.mean(hd_scores)\n",
" else:\n",
" return 0\n",
"\n",
"def custom_metric_adj(inp, targ, seed=42):\n",
" hd_score_per_batch = hd_dist_adj(inp, targ, seed)\n",
" dice_score_per_batch = dice_coeff_adj(inp, targ)\n",
" \n",
" return 0.4*dice_score_per_batch + 0.6*hd_score_per_batch"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Loss Functions"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"ExecuteTime": {
"end_time": "2022-06-28T03:46:49.088279Z",
"start_time": "2022-06-28T03:46:49.088271Z"
}
},
"outputs": [],
"source": [
"class DiceBCEModule(Module):\n",
" def __init__(self, eps:float=1e-5, from_logits=True):\n",
" store_attr()\n",
" \n",
" def forward(self, inp:Tensor, targ:Tensor) -> Tensor:\n",
" inp = inp.view(-1)\n",
" targ = targ.view(-1)\n",
" \n",
" if self.from_logits: \n",
" bce_loss = nn.BCEWithLogitsLoss()(inp, targ)\n",
" inp = torch.sigmoid(inp)\n",
" \n",
" \n",
" intersection = (inp * targ).sum() \n",
" dice = (2.*intersection + self.eps)/(inp.sum() + targ.sum() + self.eps) \n",
" \n",
" return 0.5*(1 - dice) + 0.5*bce_loss\n",
"\n",
"\n",
"class DiceBCELoss(BaseLoss):\n",
" def __init__(self, *args, eps:float=1e-5, from_logits=True, thresh=0.5, **kwargs):\n",
" super().__init__(DiceBCEModule, *args, eps=eps, from_logits=from_logits, flatten=False, is_2d=True, floatify=True, **kwargs)\n",
" self.thresh = thresh\n",
" \n",
" def decodes(self, x:Tensor) -> Tensor:\n",
" \"Converts model output to target format\"\n",
" return (x>self.thresh).long()\n",
"\n",
" def activation(self, x:Tensor) -> Tensor:\n",
" \"`nn.BCEWithLogitsLoss`'s fused activation function applied to model output\"\n",
" return torch.sigmoid(x)\n",
"\n",
"# Source: https://www.kaggle.com/code/thedrcat/focal-multilabel-loss-in-pytorch-explained/notebook\n",
"def focal_binary_cross_entropy(logits, targets, gamma=2, n=3):\n",
" p = torch.sigmoid(logits)\n",
" p = torch.where(targets >= 0.5, p, 1-p)\n",
" logp = - torch.log(torch.clamp(p, 1e-4, 1-1e-4))\n",
" loss = logp*((1-p)**gamma)\n",
" loss = n*loss.mean()\n",
" return loss\n",
"\n",
"class DiceFocalModule(Module):\n",
" def __init__(self, eps:float=1e-5, from_logits=True, ws=[0.5, 0.5], gamma=2, n=3):\n",
" store_attr()\n",
" \n",
" def forward(self, inp:Tensor, targ:Tensor) -> Tensor:\n",
" inp = inp.view(-1)\n",
" targ = targ.view(-1)\n",
" \n",
" if self.from_logits: \n",
" focal_loss = focal_binary_cross_entropy(inp, targ, self.gamma, self.n)\n",
" inp = torch.sigmoid(inp)\n",
" \n",
" \n",
" intersection = (inp * targ).sum() \n",
" dice = (2.*intersection + self.eps)/(inp.sum() + targ.sum() + self.eps) \n",
" \n",
" return self.ws[0]*(1 - dice) + self.ws[1]*focal_loss\n",
" \n",
"class DiceFocalLoss(BaseLoss):\n",
" def __init__(self, *args, eps:float=1e-5, from_logits=True, ws=[0.5, 0.5], gamma=2, n=3, thresh=0.5, **kwargs):\n",
" super().__init__(DiceFocalModule, *args, eps=eps, from_logits=from_logits, ws=ws, gamma=gamma, n=n, flatten=False, is_2d=True, floatify=True, **kwargs)\n",
" self.thresh = thresh\n",
" \n",
" def decodes(self, x:Tensor) -> Tensor:\n",
" \"Converts model output to target format\"\n",
" return (x>self.thresh).long()\n",
"\n",
" def activation(self, x:Tensor) -> Tensor:\n",
" \"`nn.BCEWithLogitsLoss`'s fused activation function applied to model output\"\n",
" return torch.sigmoid(x)\n",
"\n",
"class FocalTverskyLossModule(Module):\n",
" def __init__(self, eps:float=1e-5, from_logits=True, alpha=0.3, beta=0.7, gamma=3/4):\n",
" store_attr()\n",
" \n",
" def forward(self, inp:Tensor, targ:Tensor) -> Tensor:\n",
" inp = inp.view(-1)\n",
" targ = targ.view(-1)\n",
" \n",
" if self.from_logits: \n",
" inp = torch.sigmoid(inp)\n",
" \n",
" inp_0, inp_1 = inp, 1 - inp\n",
" targ_0, targ_1 = targ, 1 - targ\n",
" \n",
" num = (inp_0 * targ_0).sum() \n",
" denom = num + (self.alpha * (inp_0 * targ_1).sum()) + (self.beta * (inp_1 * targ_0).sum()) + self.eps\n",
" loss = 1 - (num / denom)\n",
" return loss**self.gamma \n",
" \n",
"class FocalTverskyLoss(BaseLoss):\n",
" def __init__(self, *args, eps:float=1e-5, from_logits=True, alpha=0.3, beta=0.7, gamma=3/4, thresh=0.5, **kwargs):\n",
" super().__init__(FocalTverskyLossModule, *args, eps=eps, from_logits=from_logits, alpha=alpha, beta=beta, gamma=gamma, flatten=False, is_2d=True, floatify=True, **kwargs)\n",
" self.thresh = thresh\n",
" \n",
" def decodes(self, x:Tensor) -> Tensor:\n",
" \"Converts model output to target format\"\n",
" return (x>self.thresh).long()\n",
"\n",
" def activation(self, x:Tensor) -> Tensor:\n",
" \"`nn.BCEWithLogitsLoss`'s fused activation function applied to model output\"\n",
" return torch.sigmoid(x)\n",
"\n",
"def focal_binary_cross_entropy(logits, targets, gamma=2, n=3):\n",
" p = torch.sigmoid(logits)\n",
" p = torch.where(targets >= 0.5, p, 1-p)\n",
" logp = - torch.log(torch.clamp(p, 1e-4, 1-1e-4))\n",
" loss = logp*((1-p)**gamma)\n",
" loss = n*loss.mean()\n",
" return loss\n",
"\n",
"class ComboModule(Module):\n",
" def __init__(self, eps:float=1e-5, from_logits=True, ws=[2, 3, 1], gamma=2, n=3):\n",
" store_attr()\n",
" \n",
" def forward(self, inp:Tensor, targ:Tensor) -> Tensor:\n",
" inp = inp.view(-1)\n",
" targ = targ.view(-1)\n",
" \n",
" if self.from_logits: \n",
" focal_loss = focal_binary_cross_entropy(inp, targ, self.gamma, self.n)\n",
" bce_loss = nn.BCEWithLogitsLoss()(inp, targ)\n",
" inp = torch.sigmoid(inp)\n",
" \n",
" intersection = (inp * targ).sum() \n",
" dice = (2.*intersection + self.eps)/(inp.sum() + targ.sum() + self.eps) \n",
" \n",
" return self.ws[0]*(1 - dice) + self.ws[1]*focal_loss + self.ws[2]*bce_loss\n",
" \n",
"class ComboLoss(BaseLoss):\n",
" def __init__(self, *args, eps:float=1e-5, from_logits=True, ws=[2, 3, 1], gamma=2, n=3, thresh=0.5, **kwargs):\n",
" super().__init__(ComboModule, *args, eps=eps, from_logits=from_logits, ws=ws, gamma=gamma, n=n, flatten=False, is_2d=True, floatify=True, **kwargs)\n",
" self.thresh = thresh\n",
" \n",
" def decodes(self, x:Tensor) -> Tensor:\n",
" \"Converts model output to target format\"\n",
" return (x>self.thresh).long()\n",
"\n",
" def activation(self, x:Tensor) -> Tensor:\n",
" \"`nn.BCEWithLogitsLoss`'s fused activation function applied to model output\"\n",
" return torch.sigmoid(x)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Set up CUDA"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"device_name: GeForce RTX 2080 Ti\n",
"device_capability: (7, 5)\n",
"device_properties: _CudaDeviceProperties(name='GeForce RTX 2080 Ti', major=7, minor=5, total_memory=11019MB, multi_processor_count=68)\n",
"current_device: 0\n",
"\n",
"Available Device IDs: (0, 1, 2, 3)\n",
"Device 0: 10620 MB free\n",
"Device 1: 7899 MB free\n",
"Device 2: 16274 MB free\n",
"Device 3: 9241 MB free\n"
]
}
],
"source": [
"# Select Cuda GPU device\n",
"def get_memory_free_MiB(gpu_index):\n",
" pynvml.nvmlInit()\n",
" handle = pynvml.nvmlDeviceGetHandleByIndex(int(gpu_index))\n",
" mem_info = pynvml.nvmlDeviceGetMemoryInfo(handle)\n",
" return mem_info.free // 1024 ** 2\n",
"\n",
"device_count = torch.cuda.device_count()\n",
"current_device = torch.cuda.current_device()\n",
"device_name = torch.cuda.get_device_name(current_device)\n",
"device_capability = torch.cuda.get_device_capability(current_device)\n",
"device_properties = torch.cuda.get_device_properties(current_device)\n",
"is_available = torch.cuda.is_available()\n",
"device_cuda = torch.device(\"cuda\")\n",
"devices_tup = tuple(range(device_count))\n",
"\n",
"print('device_name: {device_name}'.format(device_name=device_name))\n",
"print('device_capability: {device_capability}'.format(device_capability=device_capability))\n",
"print('device_properties: {device_properties}'.format(device_properties=device_properties))\n",
"print('current_device: {current_device}'.format(current_device=current_device))\n",
"print(\"\\nAvailable Device IDs: \", devices_tup)\n",
"\n",
"for device_id in devices_tup:\n",
" print(f\"Device {device_id}: {get_memory_free_MiB(device_id)} MB free\")"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Successfully selected device 2\n"
]
}
],
"source": [
"device_id = 2\n",
"torch.backends.cudnn.benchmark = True\n",
"\n",
"if device_id is not None:\n",
" torch.cuda.set_device(device_id)\n",
" current_device = torch.cuda.current_device()\n",
" if current_device == device_id:\n",
" print(f\"\\nSuccessfully selected device {device_id}\")\n",
" else:\n",
" print(f\"Error: Couldn't change device from {current_device} to {device_id}\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Baseline train using SMP"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"ExecuteTime": {
"end_time": "2022-06-28T03:46:49.089093Z",
"start_time": "2022-06-28T03:46:49.089085Z"
}
},
"outputs": [],
"source": [
"def build_model(encoder_name, in_c=3, classes=3, weights=\"imagenet\"):\n",
" model = smp.Unet(\n",
" encoder_name=encoder_name, \n",
" encoder_weights=weights, \n",
" in_channels=in_c, \n",
" classes=classes, \n",
" activation=None\n",
" )\n",
" return model\n",
"\n",
"# Split any of model parameters from smp into encoder and decoder, \n",
"# so that we can freeze and unfreeze encoder layers.\n",
"def smp_splitter(model):\n",
" model_layers = list(model.children())\n",
" encoder_params = params(model_layers[0])\n",
" decoder_params = params(model_layers[1]) + params(model_layers[2])\n",
" return L(encoder_params, decoder_params)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/kgeorgio/miniconda3/envs/gi-tract/lib/python3.7/site-packages/torch/_tensor.py:575: UserWarning: floor_divide is deprecated, and will be removed in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values.\n",
"To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor'). (Triggered internally at /opt/conda/conda-bld/pytorch_1631630742027/work/aten/src/ATen/native/BinaryOps.cpp:467.)\n",
" return torch.floor_divide(self, other)\n"
]
}
],
"source": [
"dev_df = train_df.sample(frac=0.2)\n",
"up_size = (320, 384)\n",
"tfms = [[partial(get_25D_image, up_size=up_size), PILImage.create],\n",
" [partial(get_mask, up_size=up_size), PILMask.create]] # the pipeline\n",
"\n",
"splits = RandomSplitter()(dev_df)\n",
"# https://docs.fast.ai/tutorial.albumentations.html\n",
"albu_aug = AlbumentationsTransform(get_train_aug(up_size), \n",
" get_test_aug(up_size))\n",
" \n",
"# https://docs.fast.ai/data.core.html#Datasets\n",
"dsets = Datasets(train_df, tfms, splits=splits)\n",
"# https://docs.fast.ai/data.load.html#DataLoader\n",
"dls = dsets.dataloaders(bs=16, \n",
" after_item=[albu_aug, ToTensor], \n",
" after_batch=[IntToFloatTensor(div_mask=255), \n",
" Normalize.from_stats(*imagenet_stats)],\n",
" device=device_id)\n",
"# https://smp.readthedocs.io/en/latest/encoders.html\n",
"model = build_model('efficientnet-b0', in_c=3, classes=3, weights=\"imagenet\")\n",
"model = model.cuda(device_id)\n",
"metrics = [\n",
" dice_coeff_adj, \n",
" hd_dist_adj, \n",
" custom_metric_adj\n",
" ]\n",
"loss_func = ComboLoss()\n",
"splitter = smp_splitter"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"ExecuteTime": {
"end_time": "2022-06-28T03:46:49.091707Z",
"start_time": "2022-06-28T03:46:49.091699Z"
}
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"<style>\n",
" /* Turns off some styling */\n",
" progress {\n",
" /* gets rid of default border in Firefox and Opera. */\n",
" border: none;\n",
" /* Needs to be in here for Safari polyfill so background images work as expected. */\n",
" background-size: auto;\n",
" }\n",
" .progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {\n",
" background: #F44336;\n",
" }\n",
"</style>\n"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: left;\">\n",
" <th>epoch</th>\n",
" <th>train_loss</th>\n",
" <th>valid_loss</th>\n",
" <th>dice_coeff_adj</th>\n",
" <th>hd_dist_adj</th>\n",
" <th>custom_metric_adj</th>\n",
" <th>time</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <td>0</td>\n",
" <td>1.383521</td>\n",
" <td>1.162622</td>\n",
" <td>0.383626</td>\n",
" <td>0.797801</td>\n",
" <td>0.632131</td>\n",
" <td>01:41</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"<style>\n",
" /* Turns off some styling */\n",
" progress {\n",
" /* gets rid of default border in Firefox and Opera. */\n",
" border: none;\n",
" /* Needs to be in here for Safari polyfill so background images work as expected. */\n",
" background-size: auto;\n",
" }\n",
" .progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {\n",
" background: #F44336;\n",
" }\n",
"</style>\n"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: left;\">\n",
" <th>epoch</th>\n",
" <th>train_loss</th>\n",
" <th>valid_loss</th>\n",
" <th>dice_coeff_adj</th>\n",
" <th>hd_dist_adj</th>\n",
" <th>custom_metric_adj</th>\n",
" <th>time</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <td>0</td>\n",
" <td>0.814299</td>\n",
" <td>0.605600</td>\n",
" <td>0.621061</td>\n",
" <td>0.814855</td>\n",
" <td>0.737338</td>\n",
" <td>01:59</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# https://docs.fast.ai/learner.html#Learner\n",
"learn = Learner(dls, \n",
" model,\n",
" metrics=metrics, \n",
" loss_func=loss_func, \n",
" splitter=splitter).to_fp16()\n",
"\n",
"#https://docs.fast.ai/callback.schedule.html#Learner.fine_tune\n",
"learn.freeze()\n",
"learn.fine_tune(1, 1e-2)\n",
"learn.export('test_model.pkl')"
]
},
{
"cell_type": "markdown",
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"source": [
"## Use DynamicUnet"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"def timm_model_sizes(encoder, img_size):\n",
" sizes = []\n",
" for layer in encoder.feature_info:\n",
" sizes.append(torch.Size([1, layer['num_chs'], img_size[0]//layer['reduction'], img_size[1]//layer['reduction']]))\n",
" return sizes\n",
"\n",
"\n",
"def get_timm_output_layers(encoder):\n",
" outputs = []\n",
" for layer in encoder.feature_info:\n",
" # Converts 'blocks.0.0' to ['blocks', '0', '0']\n",
" attrs = layer['module'].split('.')\n",
" output_layer = getattr(encoder, attrs[0])[int(attrs[1])][int(attrs[2])]\n",
" outputs.append(output_layer)\n",
" return outputs\n",
"\n",
"\n",
"class DynamicTimmUnet(SequentialEx):\n",
" \"Create a U-Net from a given architecture in timm.\"\n",
" def __init__(self, encoder, n_out, img_size, blur=False, blur_final=True, self_attention=False,\n",
" y_range=None, last_cross=True, bottle=False, act_cls=defaults.activation,\n",
" init=nn.init.kaiming_normal_, norm_type=None, **kwargs):\n",
" imsize = img_size\n",
" sizes = timm_model_sizes(encoder, img_size)\n",
" sz_chg_idxs = list(reversed(range(len(sizes))))\n",
" outputs = list(reversed(get_timm_output_layers(encoder)))\n",
" self.sfs = hook_outputs(outputs, detach=False)\n",
" \n",
" # cut encoder\n",
" encoder = nn.Sequential(*list(encoder.children()))[:-5]\n",
" \n",
" x = dummy_eval(encoder, imsize).detach()\n",
"\n",
" ni = sizes[-1][1]\n",
" middle_conv = nn.Sequential(ConvLayer(ni, ni*2, act_cls=act_cls, norm_type=norm_type, **kwargs),\n",
" ConvLayer(ni*2, ni, act_cls=act_cls, norm_type=norm_type, **kwargs)).eval()\n",
" x = middle_conv(x)\n",
" layers = [encoder, BatchNorm(ni), nn.ReLU(), middle_conv]\n",
"\n",
" for i,idx in enumerate(sz_chg_idxs):\n",
" not_final = i!=len(sz_chg_idxs)-1\n",
" up_in_c, x_in_c = int(x.shape[1]), int(sizes[idx][1])\n",
" do_blur = blur and (not_final or blur_final)\n",
" sa = self_attention and (i==len(sz_chg_idxs)-3)\n",
" unet_block = UnetBlock(up_in_c, x_in_c, self.sfs[i], final_div=not_final, blur=do_blur, self_attention=sa,\n",
" act_cls=act_cls, init=init, norm_type=norm_type, **kwargs).eval()\n",
" layers.append(unet_block)\n",
" x = unet_block(x)\n",
"\n",
" ni = x.shape[1]\n",
" if imsize != sizes[0][-2:]: layers.append(PixelShuffle_ICNR(ni, act_cls=act_cls, norm_type=norm_type))\n",
" layers.append(ResizeToOrig())\n",
" if last_cross:\n",
" layers.append(MergeLayer(dense=True))\n",
" ni += in_channels(encoder)\n",
" layers.append(ResBlock(1, ni, ni//2 if bottle else ni, act_cls=act_cls, norm_type=norm_type, **kwargs))\n",
" layers += [ConvLayer(ni, n_out, ks=1, act_cls=None, norm_type=norm_type, **kwargs)]\n",
" apply_init(nn.Sequential(layers[3], layers[-2]), init)\n",
" #apply_init(nn.Sequential(layers[2]), init)\n",
" if y_range is not None: layers.append(SigmoidRange(*y_range))\n",
" layers.append(ToTensorBase())\n",
" super().__init__(*layers)\n",
"\n",
" def __del__(self):\n",
" if hasattr(self, \"sfs\"): self.sfs.remove()\n",
" \n",
" \n",
"def dynamic_unet_splitter(model):\n",
" return L(model[0], model[1:]).map(params)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"<style>\n",
" /* Turns off some styling */\n",
" progress {\n",
" /* gets rid of default border in Firefox and Opera. */\n",
" border: none;\n",
" /* Needs to be in here for Safari polyfill so background images work as expected. */\n",
" background-size: auto;\n",
" }\n",
" .progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {\n",
" background: #F44336;\n",
" }\n",
"</style>\n"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"SuggestedLRs(valley=0.00013182566908653826)"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEKCAYAAAAfGVI8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAtpklEQVR4nO3deXxcdbn48c8zk8m+NUu3pCVt09J9syBYkNqC7AVFQC+uPxSRe0FQ4cq9ioD7dYGLioKieEXBWlDKorIWFBDbQlvpQps0aZtumSTNMpM9eX5/zKSEkKRJO2fOLM/79ZpXZ845c87z7bTzzHc536+oKsYYY5KXx+0AjDHGuMsSgTHGJDlLBMYYk+QsERhjTJKzRGCMMUnOEoExxiS5FLcDGK2ioiItKytzOwxjjIkrGzZsqFPV4sH2xV0iKCsrY/369W6HYYwxcUVEdg+1z5qGjDEmyVkiMMaYJGeJwBhjklzc9REMpquri5qaGtrb290OxTXp6emUlpbi8/ncDsUYE2cSIhHU1NSQk5NDWVkZIuJ2OFGnqtTX11NTU8OUKVPcDscYE2cSommovb2dwsLCpEwCACJCYWFhUteIjDHHLiESAZC0SaBPspffmESmqjy2aT/7G9scOX/CJIJ4kp2dDUB1dTVz5851ORpjTKw70NTOtQ++znPbax05f3Imgs2r4I65cGt+6M/Nq9yOyBhjhrSzNgDA9LHZjpw/+RLB5lXw2HXQtBfQ0J+PXXdcyeDLX/4yP/nJT468vvXWW/nGN77BihUrWLx4MfPmzePRRx8d9hw9PT3ceOONnHTSScyfP5977rkHgI9//OP86U9/OnLcFVdccdRzGWMSy85DLQBMH5fjyPmTLxE8ezt0DWhn62oLbT9Gl19+OatWvZVIVq1axSc+8Qn++Mc/8tprr/H888/zxS9+keGWBb3vvvvIy8tj3bp1rFu3jp///OdUVVVx5ZVXcv/99wPQ1NTEyy+/zPnnn3/MsRpj4k9FbYDCrFQKslIdOX9CDB8dlaaa0W0fgUWLFlFbW8v+/fvx+/2MGTOG8ePHc8MNN/Diiy/i8XjYt28fhw4dYvz48YOe46mnnmLz5s2sXr06FE5TEzt37uT9738/11xzDX6/n4cffphLLrmElJTk+9iMSWY7awOUO9QsBMmYCPJKw81Cg2w/DpdeeimrV6/m4MGDXH755fz2t7/F7/ezYcMGfD4fZWVlww7vVFV+9KMfcfbZZ79j38c//nEeeOABHnroIX71q18dV5zGmPiiquw41MJFCyc6do3kaxpacQv4Mt6+zZcR2n4cLr/8ch566CFWr17NpZdeSlNTE2PHjsXn8/H888+ze/eQE/8BcPbZZ/PTn/6Urq4uAHbs2EEwGATgk5/8JHfeeScAs2fPPq44jTHxpbalg5b2bqaPdaZ/AJKxRjD/stCfz94eag7KKw0lgb7tx2jOnDm0tLRQUlLChAkTuOKKK7jwwguZN28eS5YsYebMmcO+/9Of/jTV1dUsXrwYVaW4uPhIJ/G4ceOYNWsWF1988XHFaIyJPzsPOTtiCECG68CMRUuWLNGB6xFs27aNWbNmuRSR81pbW5k3bx6vvfYaeXl5Qx6X6H8PxiSjX71UxW2PbWXdf59JcU7aMZ9HRDao6pLB9iVf01CceeaZZ5g1axbXXnvtsEnAGJOYdtYGyM/0UZTtzIghSMamoThz5plnHrV/wRiTuCoOBZg+NtvRaWSsRmCMMTFKVdlR20K5gx3FkECJIN76OiIt2ctvTCKqD3bS2NrlaEcxJEgiSE9Pp76+Pmm/DPvWI0hPT3c7FGNMBB0ZMTTO2UTgeB+BiHiB9cA+Vb1giGMuAVYDJ6nq+sGOGU5paSk1NTX4/f7jCzaO9a1QZoxJHBW14TmGHG4aikZn8eeBbUDuYDtFJCd8zKvHegGfz2crcxljEs7O2gA5aSmMyz32YaMj4WjTkIiUAucDvxjmsK8D3wVseS1jjOln56EA5eOcHTEEztcI7gRuAgat14jIYmCSqj4hIjc6HMuwenqV1/ccpqouSEOwk4ZgJ/XBTnp7ldIxGZSOyTzy57i8NNJSvG97v6rSEOxkV10Qj8CJ43PJTrPRucaYY7ezNsDymcWOX8exbyoRuQCoVdUNIrJskP0e4IfAJ0dwrquAqwAmT54csRi7enp5pbKev2w5yFNbDlIX6DyyLy3FQ2FWKiLCnza20TugH7ooO40JeemMy02jLtDJLn+A5vbutx1TVpjJrAm5lI/NJjsthcxULxmpKaSmePC3dFBzuJV9h9vY19hGZqqXKUVZTC3OZkpRFvkZPg63dlIX6KQ+0ElrVzflxdnMLcmjfGw2Pm/kKnO9vUpjWxcNwQ46unspyEplTGYq6b53JrvOnl56ewc/T9+PlhSPkBLB+IxJRoeDndQFOhzvHwBnawRLgZUich6QDuSKyAOq+tHw/hxgLrA2XO0ZD6wRkZUDO4xV9V7gXghNMXEswVT6A6yramBPQyu7G1rZU99KVV2QQEc3male3jdzLOfOHc/8knwKslPJSvUeqY519fRysKmdvYdbqTncxoHGdg42t7G/sZ2aw20UZKVy4YKJTC3OZmpxFt09yrYDzUcef9lykMEGNGWmeikdk0FJfgbBzh6e2+5n1frBp8P2eYWuntBJ0lI8zByfw5isVHxeD6leDylewesRBMEjoS9lQVA0/HcIvQqtnd0EOrppbu8m0N5FY2sXh1s735HoALJSveRm+Ojs7qWtq4f2rp5BjxtMZqqXvAwfuek+8jJ8ZKenkJ2W8taf/R/pKWSkevF5PPi8oSTi8woeEUTAI6HnmalecsLvt0RjEl2FPzRiqNzhEUPgYCJQ1ZuBmwHCNYIv9UsCqGoTUNT3WkTWho8Z9aihkXh22yG+9eR2UjxC6ZgMJhdmsWhyPqdPL+b06UXv+PXbn8/rYVJBJpMKMkd8vbNmjzvyvLdXaevqobWzh9bObjq6eynOTiM/0/eOtr/m9i6q/EGa2roozE6lKDuNMZmpeD1CVV2QLfubeGNfE1sPNNMQ7KSzu5fuXqWrp5funr4vfaVXQVEEOfJLve/LNDs9hdz0FCbmpZOfmUphViqF2aFFL9JSPDQEQ8mhIdhJc1sXqSkeMnxeMlK9pPu8eD3vbK/U8PVUobtHaW7vormti+b2LprauqhtaaeqroeW9m5a2rvo6B6iWjFCmalexmSG4g7Fn0ZxThrjctIYn5fOuNx0xuelMzYnfdB4jYl1O/pWJXP4HgJwYYoJEbkdWK+qa6J53UsWl3Lu3AlMyEuP+q9Jj0fISkshKy0FGL73Pzfdx4JJ+YPuKx+bTfnYbC5aWBL5IKOsu6eXYEcPLR1dBDq6ae3sobtH6e7ppTOc1Ho1VJ9RVXp6IdjZfSSRtLR309jaRV2gA3+gg20HWqgLdNA9oMqS6vWEE38mkwsyGZuTRm64ppKTnkJBViqTCzIpCDcDGhMrdh4KkJXqpSQ/4+gHH6eoJAJVXQusDT8fdOJ/VV3mZAyF2WkUOnkBMyopXg95mR7yMn0RO2dvr9LQ2snBpnYONbdzoCnUdLenIciehlY27D5My4B+nD5ZqV4mFYSSxZSirLcexVkUZ6dZkjBRVxFelSwa//ZsWItJGB6PUJSdRlF2GnNLBp+ptbO7l5b2Lprbu2lu68Lf0sHew63srm9lb0Mru+qCrH3TT2fPW01XxTlpLJqUz6LJY1g0OZ8FpflkpA7dlGhMJOysbeG0cudHDIElApNkUlM8odph9tBNdD29yv7GNnbVBdnlD/CvmiZe39vIU1sPAaHO+tOnF3HmrHEsnzWWsTk2tYeJrKa2Lg41dzg+tUQfSwTGDOD1yJHBAWfMeOsXWUOwk417D/Pijjqe3nqIZ7bVArBocj4rF0zk/PkTLCmYiKiodX5Vsv4sERgzQgVZqSyfOY7lM8fxtQtns/1gC89sPcSTbxzktse28vXHt7K0vIgLF0zk1KmFlI7JsL4Fc0z65hgqt0RgTOwSEWZNyGXWhFyuXTGdnYdaWLNpP2s27eem1ZsByM/0Ma8kj7kleZxWXsQpUwttKKsZkYraAKkpHkrHjHzI+vFIiDWLjYkVqsrWA81s3NvIG/ua2FzTxJsHW+juVcbmpHHhgolctHAi80ryrLZghvT/7l/H/sY2/nL9eyN2zuHWLLYagTERJCLMmZjHnIlvjVpq7+rhue21/On1ffzmld3c9/cqZo7P4Svnz+a0tufg2duhqQbySmHFLTD/MhdLYGJBRW2A+aXRW6PcEoExDkv3eTlv3gTOmzeBptYunnzjAD9dW8mqX/2Ak9LuI007Qgc27YXHrgs9t2SQtNq7eth7uJUPLIrejaM2YYsxUZSX6eMjJ0/mqRveyzdyHnkrCfTpagvVEEzSqqoLohq9jmKwGoExrkj3eUnvODT4zqbBJx40yaFv6Oi04uglAqsRGOOWvMGXFu3Njf+5pMyxq/QHEIGpxVlRu6YlAmPcsuIW8L19QrFWTeUO/QiNrZ1DvMkkuoraAJPGZA47I3KkWSIwxi3zL4ML74K8SYBA3iR2vvtb3NPwLj587z/wt3Qc9RQm8VT6g0yLYm0ArI/AGHfNv+xtI4QWAPdN93PV/23gs79Zz0NXnUpqiv1eSxY9vcouf4DTyqM7V7L9CzMmxpw+vZjvXTqf1/Y08q0nt7kdjomi/Y1tdHT3RrWjGCwRGBOTLpg/kU8tLeP+l6t5bNN+t8MxUdI3YiiaQ0fBEoExMevmc2fxrhPG8J8Pbz4yCZlJbG4MHQVLBMbErNQUDz/5t8Vk+Lxc/cBrBDsGX13NJI5Kf4DCrFTGZKVG9bqWCIyJYePz0rnrI4vY5Q9w08ObibdJIs3oVNQGmBblZiGwRGBMzFtaXsSNZ8/kic0HuHttpdvhGAdV+gNRbxYCSwTGxIWrz5jKygUT+d5f3+SpLQfdDsc4oD7QweHWrqh3FIMlAmPigojwPx+az/zSPG74/UbePGidx4mm0h8EiPrNZGCJwJi4ke7zcu/HlpCZlsKn/28dh4M2DUUicWvoKFgiMCaujM9L596PvYtDzR1c89vX6O7pdTskEyEVtQEyfF4m5mUc/eAIs0RgTJxZNHkM3/rAPF7ZVc89L+5yOxwTIZX+AFOLs/C4sK61JQJj4tAli0s4f94E7nxmB9sONLsdjomAitqAK81CYInAmLgkInz94rnkZaTyhVWb6Oy2JqJ41tbZw77GNleGjkIUEoGIeEXkdRF5fJB9XxCRrSKyWUSeFZETnI7HmERRkJXKtz84j20Hmrnr2Z1uh2OOQ6XfvY5iiE6N4PPAUFMovg4sUdX5wGrgf6IQjzEJ46zZ4/jQu0q5e20Fr+857HY45hj1JYKErBGISClwPvCLwfar6vOq2hp++Q9g8LX7jDFDuuXC2YzPTeeLf9hEe1eP2+GYY1BZG8AjUFaU6cr1na4R3AncBIykAfNK4M+ORmNMAspN9/E/H1rALn+Q7/x5u9vhmGNQ4Q8wuSCTtJToLU/Zn2OJQEQuAGpVdcMIjv0osAT43hD7rxKR9SKy3u/3RzhSY+LfadOL+OR7QusXvLDD/o/Em8raoGv9A+BsjWApsFJEqoGHgOUi8sDAg0TkTOC/gZWqOugirap6r6ouUdUlxcXFDoZsTPz68rkzmTEumy/9YRMNdtdx3Oju6aWqLujKrKN9HEsEqnqzqpaqahnwYeA5Vf1o/2NEZBFwD6EkUOtULMYkg3SflzsvX0RTaxf/9ci/bMrqOLH3cBudPdFfnrK/qN9HICK3i8jK8MvvAdnAH0Rko4isiXY8xiSS2RNz+dLZM/jLloP8YUON2+GYEah0cY6hPinRuIiqrgXWhp/f0m/7mdG4vjHJ5NOnTeX57X5uW7OFd08p4ITC6M9maUauwuWho2B3FhuTcDwe4QeXLcDrEa5+4DVa2rvcDskMo6I2QHFOGnkZPtdisERgTAKamJ/Bj/9tMTsPtXD1AxtsCooYVukPUO5ibQAsERiTsN47o5jvXjKflyrquWn1Jnp7rfM41qiqq5PN9YlKH4Exxh2XvKuUg83tfO+vbzIuL52bz53ldkimH39LBy3t3a6sStafJQJjEtw1y6ZxsKmde17YxfjcdD61dIrbIZmwiiOTzeW4Goc1DRmT4ESEW1fO4azZ4/jGE9vYXNPodkgmLBaGjoIlAmOSgtcjfP9DCyjMSuWm1Zut8zhGVNQGyE5LYVxumqtxWCIwJknkZfr45gfmsf1gC3evrXA7HANU+oNMK85CJPrLU/ZnicCYJHLW7HFctHAiP36uwpa4jAEVtQFXbyTrY4nAmCTztQvnkJ/p46bVm+nusSYit7S0d3Gwud3Vyeb6WCIwJskUZKVy+0Vz+de+Ju792y63w0lalf4g4H5HMVgiMCYpnTdvAufOHc+dT++kui7odjhJqW/EkDUNGWNcc9vKOYjAT9dWuh1KUqrwB0jxCCcUurM8ZX+WCIxJUmNz07n8pEk88noN+xvb3A4n6VTUBigrysLndf9r2P0IjDGu+ewZ01CFe1+0voJoq/QHXJ9aoo8lAmOSWEl+Bh9YVMKD/9yDv2XQlWKNAzq7e9ld3xoTHcVgicCYpHf1sml09vTyy5eq3A4laeyuD9LTq5YIjDGxYVpxNufNm8BvXtlNU6stYhMNlTGwKll/lgiMMfz7snICHd38+pVqt0NJChUxNHQULBEYYwgter9i5lh++VIVwY5ut8NJeBW1ASbkpZOVFhsrAVgiMMYA8O/Ly2ls7eLBf+5xO5SEV+kPxkz/AFgiMMaELZ48hlOmFvCLv1XZNNUOUtXw0FFLBMaYGHT1GdM42NzOoxv3uR1KwjrQ1E5rZ09MTDbXxxKBMeaIM2YUM3N8Dve+uMsWu3fIWyOGYuNmMrBEYIzpR0S4+oxp7KwN8Nz2WrfDSUixsjxlf5YIjDFvc/78CZTkZ/CzF2wyOidU+oPkpKdQnO3u8pT9WSIwxryNz+vh06dPYf3uw6yvbnA7nITT11Hs9vKU/TmeCETEKyKvi8jjg+xLE5Hfi0iFiLwqImVOx2OMObrLT5pEfqaPn71gk9FFWqyNGILo1Ag+D2wbYt+VwGFVLQfuAL4bhXiMMUeRmZrCx08t45lth6iobXE7nITR3N7FoeYOpo2NnY5icDgRiEgpcD7wiyEOuQj4dfj5amCFxFJ9yZgk9olTTyDd57FaQQTt6lueMslqBHcCNwFD3Z1SAuwFUNVuoAkodDgmY8wIFGan8ZGTJ/PIazXsPGS1gkg4sjxlDI0YAgcTgYhcANSq6oYInOsqEVkvIuv9fn8EojPGjMS1y6eTlZrCd/683e1QEkJleHnKyQXuL0/Z34gSgYhkiYgn/HyGiKwUEd9R3rYUWCki1cBDwHIReWDAMfuASeHzpgB5QP3AE6nqvaq6RFWXFBcXjyRkY0wEFGSlcs37ynl2ey0vV9a5HU7cq/QHOKEwMyaWp+xvpNG8CKSLSAnwFPAx4P7h3qCqN6tqqaqWAR8GnlPVjw44bA3wifDzD4WPsdsZjYkhn1paxsS8dL715Da72/g4VfqDMTdiCEaeCERVW4EPAner6qXAnGO5oIjcLiIrwy/vAwpFpAL4AvDlYzmnMcY56T4vN55zIm/sa+bRTTYH0bHq6umlui62Zh3tM+JEICKnAlcAT4S3eUd6EVVdq6oXhJ/foqprws/bVfVSVS1X1ZNV1YYnGBODLlpQwtySXL7/1x20d/W4HU5c2tPQSnevxnWN4HrgZuCPqrpFRKYCzzsWlTEmpng8wn+dO4t9jW3c/3K12+HEpVgdMQQjTASq+oKqrlTV74Y7jetU9TqHYzPGxJD3lBexfOZYfvJcBY2tnW6HE3cqw/cQTI2hWUf7jHTU0O9EJFdEsoA3gK0icqOzoRljYs1N55xIS0c3v3yp2u1Q4k6lP8DYnDRy04824DL6Rto0NFtVm4GLgT8DUwiNHDLGJJGZ43M5e844fvVSFc3tXW6HE1cq/YGY7CiGkScCX/i+gYuBNaraBdg4MmOS0LXLp9PS3s2vrVYwYqpKZW3sTTbXZ6SJ4B6gGsgCXhSRE4Bmp4IyxsSuuSV5rJg5lvteqiLQ0e12OHHBH+igub07plYl62+kncV3qWqJqp6nIbuB9zkcmzEmRl27YjqNrV385pXdbocSFyprQx3FsThiCEbeWZwnIj/sm+9HRH5AqHZgjElCCyfl894Zxfzib7to7bRawdG8tU5xHCcC4JdAC3BZ+NEM/MqpoIwxse+65eXUBzv53at73A4l5lX6A2SmepmQl+52KIMaaSKYpqpfU9Vd4cdtwFQnAzPGxLYlZQWcOrWQe17cZXcbH0XfHEOxutzKSBNBm4ic1vdCRJYCbc6EZIyJF9etmI6/pYOH/mm1guGERgzFbmv6SBPB1cBPRKQ6PK30j4HPOhaVMSYunDK1gJOnFHD32kqrFQyhrbOHfY1tMds/ACMfNbRJVRcA84H5qroIWO5oZMaYmCci3HDmDGpbOnjQagWDOtJRHKMjhmCUK5SpanP4DmMITRttjElyp04r5N1WKxhSVV3szjHU53iWyYnNXg9jTNRdf+YM/C0dNoJoEH2JoKwwMROBTTFhjAFCtYJTphbw0xesVjBQdV2QiXnppPtGvIRL1A2bCESkRUSaB3m0ABOjFKMxJg701Qp+a7WCt9lVF2RKDDcLwVESgarmqGruII8cVU2JVpDGmNh3ytRCTp1ayE/XVtLWabWCPtX1wZhuFoLjaxoyxpi3uf7M6dQFOnjgHzYHEcDhYCeNrV1MKbJEYIxJEu+eWsjp04u467md1AU63A7HdVX1oY5iSwTGmKTytQvn0N7Vw7ef3O52KK6r8lsiMMYkofKx2Xz69Kk8/FoN66ob3A7HVdX1QbweYVJBptuhDMsSgTEm4q5dXs7EvHS++qc36O7pdTsc1+yqCzJpTAY+b2x/1cZ2dMaYuJSZmsItF85m+8EWfp3Ei9dU1wUpi/FmIbBEYIxxyNlzxnPGjGLueHoHh5rb3Q4n6lSVqrpgzPcPgCUCY4xDRITbVs6hs7uXbz6xze1wos7f0kFrZ48lAmNMcisryuLqM6ayZtN+/rGr3u1wompXXXyMGAIHE4GIpIvIP0Vkk4hsEZHbBjlmsog8LyKvi8hmETnPqXiMMe743LJySvIzuHXNlqTqOK6Og8nm+jhZI+gAlofXMVgInCMipww45ivAqvD6Bh8G7nYwHmOMCzJSvXz1gllsP9iSVPMQVdUFSU3xMDE/w+1QjsqxRKAhgfBLX/gxcMZSBXLDz/OA/U7FY4xxz9lzxnNaeRE/eOpN6pPkjuOquiAnFGTi9cT+jP2O9hGIiFdENgK1wNOq+uqAQ24FPioiNcCTwLVOxmOMcYeIcOvK2bR29vC9v77pdjhRES8jhsDhRKCqPaq6ECgFThaRuQMO+Qhwv6qWAucBvxGRd8QkIleJyHoRWe/3+50M2RjjkPKxOXxqaRm/X7+XzTWNbofjqJ5eZXd9qyWC/lS1EXgeOGfAriuBVeFjXgHSgaJB3n+vqi5R1SXFxcUOR2uMccp1K6ZTlJ3GLY9uobc3cde22t/YRmdPryUCESkWkfzw8wzgLGDgLFR7gBXhY2YRSgT2k9+YBJWT7uPL58xk495GnvjXAbfDccyR5SmTPREAE4DnRWQzsI5QH8HjInK7iKwMH/NF4DMisgl4EPikqibuzwRjDB9YVML0sdn86LmdCVsrqA5PPz01ThKBY6uMqepmYNEg22/p93wrsNSpGIwxscfjEa5dMZ3rHnydv2w5yHnzJrgdUsTt8gfJSvVSnJPmdigjYncWG2Oi7vx5E5hanMVdzyZmraC6PjTZnEjsDx0FSwTGGBd4PcK1y8vZfrCFp7cdcjuciKuKk1lH+1giMMa44sL5EykrzOSuZ3eSSF2Dnd291Bxui5v+AbBEYIxxSYrXw7+/r5wt+5t5dlut2+FEzN7DrfT0alzMMdTHEoExxjUXLyphckEmdz2XOLWCvsnmphRbIjDGmKPyeT38+/umsbmmibVvJsYtRH33EEyxGoExxozMBxaVUpKfwR3P7EiIWkFVXZC8DB9jslLdDmXELBEYY1yVmuLhuhXlbK5pSoi+gr6ho/HEEoExxnUfXFzKCYWZ/PDpHXF/X0F1XStTCjPdDmNULBEYY1zn83q4bvl0th5o5qmtB90O55i1d/Wwv6nNagTGGHMsLlo4kanFWdzxdPzebbynoRXV+FinuD9LBMaYmJDi9fD5FdN581BL3M5MWhVH6xT3Z4nAGBMzLpw/kRnjsrnzmR30xGGtoDrOpp/uY4nAGBMzPB7hhjNnUOkPsmbTPrfDGbXq+iAFWankZfjcDmVULBEYY2LK2XPGM2tCLnc8vZPO7l63wxmVqrogZXE2YggsERhjYozHI9x09onsaWjloXV73A5nVKrrWuOuWQgsERhjYtCyE4t595QC7np2J8GObrfDGZG2zh4ONrfH1dQSfSwRGGNijojwn+fOpC7QyS/+VuV2OCPStzyl1QiMMSZCFk8ewzlzxnPvi5XUBTrcDueojsw6aonAGGMi50tnn0hbVw8/fq7C7VCOqspqBMYYE3nlY7O5/KRJ/PbV3eypb3U7nGFV1wUpyk4jOy3F7VBGzRKBMSamfX7FDLwe4QdPv+l2KMOqrmtlSlH8DR0FSwTGmBg3Pi+dTy2dwqMb97O5ptHtcIZUVR+Mu6kl+lgiMMbEvM8tm0ZRdiq3PbY1JhevCXR042/piMv+AbBEYIyJA7npPm48+0Q27D7Mmk373Q7nHeJ5xBBYIjDGxIkPvWsScybm8p0/b6e1M7ZuMjtyD4E1DRljjHO8HuFrF87hQFM797ywy+1w3uatWUets/htRCRdRP4pIptEZIuI3DbEcZeJyNbwMb9zKh5jTPw7eUoBF8yfwM9eqGRfY5vb4RxRVdfKuNw0MlPjb+goOFsj6ACWq+oCYCFwjoic0v8AEZkO3AwsVdU5wPUOxmOMSQA3nzcLgG8/uc3lSN5SHccjhsDBRKAhgfBLX/gxsLv/M8BPVPVw+D21TsVjjEkMJfkZfPaMaTy++QCv7qp3Oxwg1DQUrx3F4HAfgYh4RWQjUAs8raqvDjhkBjBDRF4SkX+IyDlOxmOMSQxXnzGVkvwMvvroG3T1uLtmQXN7F/XBTk6wGsHgVLVHVRcCpcDJIjJ3wCEpwHRgGfAR4Ocikj/wPCJylYisF5H1fr/fyZCNMXEgMzWFW1fOYcehAPf93d3ZSd8aOhqfHcUQpVFDqtoIPA8M/MVfA6xR1S5VrQJ2EEoMA99/r6ouUdUlxcXFjsdrjIl9Z80ex1mzx3HnMzvY2+DePERVcbpOcX9Ojhoq7vt1LyIZwFnA9gGH/YlQbQARKSLUVBRb48KMMTHr1pVzEITbHtviWgzVdaEkdEKBJYLBTACeF5HNwDpCfQSPi8jtIrIyfMxfgXoR2UqoxnCjqsZG748xJuaV5Gdww1nTeWZbLU9tOehKDNX1QSbkpZOR6nXl+pHg2KBXVd0MLBpk+y39nivwhfDDGGNG7VNLp/Dwhn3cumYLS8uLyIryNNChBevjtzYAdmexMSbO+bwevvmBuexvaueHT++I+vX3NLTG7R3FfSwRGGPi3pKyAq5492R++VIV/6xqiNp1m9u7aAh2MjmO+wfAEoExJkH813mzmDQmky/9YRPBjuhMSte3atoJhVYjMMYY12WlpfD9Sxew93Ar34zS9BO7w4lgcoElAmOMiQknTyngM6dP5Xev7mHtm87PWLO7IXQPgdUIjDEmhnzhrBnMGJfNfz68mabWLkevtae+lcKsVHLSfY5ex2mWCIwxCSXd5+WHly2kPtDJVx99w9Fr7a5vZXKc1wbAEoExJgHNLcnj8yums2bTfh7duM+x6+xpaOWEOO8fAEsExpgE9bll01hywhi+8sc3HJmLqKO7h/1NbUyO85vJwBKBMSZBpXg93HH5QgBu+P1GuiM8XXXN4TZUsRqBMcbEskkFmXz94rms332Yn66tjOi5E+UeArBEYIxJcBcvKuHihRO589mdvLbncMTOu7s+NHTUOouNMSYO3H7xXMbnpnP9QxtpaY/MkNLdDa1kpnopzk6LyPncZInAGJPwctN9/O+HF7KvsY0vP/IvQhMfH5899a1MLshERCIQobssERhjksKSsgK+9P4TeWLzAf7vld3Hfb7dDa1xP7VEH0sExpik8dn3TmXFzLF844mtvH4c/QW9vRqefjr+h46CJQJjTBLxeIQfXLaAsTnp/MfvXudwsPOYznOopZ3O7l6rERhjTDzKz0zl7isW42/p4AurNtLbO/r+gt0JNHQULBEYY5LQgkn5fOWCWTz/pp//ePA1quuCo3r/kXsI4nxBmj7RXdzTGGNixMdOOYGGYCc/e6GSp7Yc4tIlk7huRTkT8jKO+t7dDUFSPMLE/PQoROo8qxEYY5KSiHD9mTN48cb3ccW7J7N6w17O+N5a7l5bcdT37q5vpWRMBinexPgKTYxSGGPMMRqbm85tF83luS8u430nFvM/f3mTF3f4h33P7vrEGToKlgiMMQYIzUv0vx9eRPnY8KI2bUPfgby7PpgwHcVgicAYY44ILWqzgNqWDm5/bOugxzS2dtLc3p0wHcVgicAYY95mfmk+1yybxsOv1fD01kPv2H9kwXqrERhjTOK6dvl0Zk3I5eZH/vWOm852NyTWPQRgicAYY94hNcXDDy5dQFNbJ1959I23TVK3p2/6aessPjoRSReRf4rIJhHZIiK3DXPsJSKiIrLEqXiMMWY0Zk/M5fozZ/DE5gPc/Mi/6AqvcLa7vpWxOWlkpibObVhOlqQDWK6qARHxAX8XkT+r6j/6HyQiOcDngVcdjMUYY0btmmXTaO/q4UfPVbCvsY27r1jM7obWhGoWAgdrBBoSCL/0hR+DTerxdeC7QLtTsRhjzLEQEb74/hP57iXzeLmynkt/9goVtQEmJ9CIIXC4j0BEvCKyEagFnlbVVwfsXwxMUtUnnIzDGGOOx+UnTeb+T53EvsNtNAQ7rUYwGqrao6oLgVLgZBGZ27dPRDzAD4EvHu08InKViKwXkfV+//B3/BljjBNOn17MHz53KqeVF7Fi1li3w4koicSSbSO6kMgtQKuqfj/8Og+oBPqaj8YDDcBKVV0/1HmWLFmi69cPudsYY8wgRGSDqg46IMfJUUPFIpIffp4BnAVs79uvqk2qWqSqZapaBvyDoyQBY4wxkedk09AE4HkR2QysI9RH8LiI3C4iKx28rjHGmFFwbPioqm4GFg2y/ZYhjl/mVCzGGGOGZncWG2NMkrNEYIwxSc4SgTHGJDlLBMYYk+QsERhjTJKL2g1lkSIifmB3+GUe0NRvd//Xgz0vAuqO4/IDr3csxw22b7hyDHzd97z/tmiU63jLNHCb05/VUDGM5phIfVb9n7v9b3Ck20fzWUF8/BtMhs9q4Ov+3xf5qlo8aASqGrcP4N6hXg/2HFgfyesdy3GD7RuuHMOUpf82x8t1vGUayecTyc8qWuWKt3+DI90+ms8qWuWyz+rYy3W0WOK9aeixYV4P9TyS1zuW4wbbN1w5Br5+bIhjjsdIznW8ZRq4zenPaqTnisZnNdJYRuJ4/w2OdLt9VsfPjc9q4OsRfV/EXdPQ8RCR9TrEXBvxLBHLlYhlAitXPEnEMg0l3msEo3Wv2wE4JBHLlYhlAitXPEnEMg0qqWoExhhj3inZagTGGGMGsERgjDFJzhKBMcYkOUsEYSJyuoj8TER+ISIvux1PpIiIR0S+KSI/EpFPuB1PJIjIMhH5W/jzWuZ2PJEkIlnhZVkvcDuWSBCRWeHPabWIfM7teCJFRC4WkZ+LyO9F5P1ux3O8EiIRiMgvRaRWRN4YsP0cEXlTRCpE5MvDnUNV/6aqVwOPA792Mt6RikS5gIsIrRndBdQ4FetIRahMSmiJ03RioEwQsXIB/CewypkoRydC/6+2hf9fXQYsdTLekYpQuf6kqp8BrgYudzLeaEiIUUMi8l5CXwz/p6pzw9u8wA5CS2TWEFol7SOAF/j2gFP8P1WtDb9vFXClqrZEKfwhRaJc4cdhVb1HRFar6oeiFf9gIlSmOlXtFZFxwA9V9YpoxT+UCJVrAVBIKMHVqerj0Yl+cJH6fxVekfBzwG9U9XfRin8oEf6++AHwW1V9LUrhO8KxFcqiSVVfFJGyAZtPBipUdReAiDwEXKSq3wYGrXaLyGSgKRaSAESmXCJSA3SGX/Y4GO6IROqzCjsMpDkS6ChF6LNaBmQBs4E2EXlSVXudjHs4kfqsVHUNsEZEngBcTwQR+qwE+A7w53hPApAgiWAIJcDefq9rgHcf5T1XAr9yLKLIGG25HgF+JCKnAy86GdhxGFWZROSDwNlAPvBjRyM7PqMql6r+N4CIfJJwrcfR6I7NaD+rZcAHCSXsJ50M7DiN9v/VtcCZQJ6IlKvqz5wMzmmJnAhGTVW/5nYMkaaqrYQSXMJQ1UcIJbiEpKr3ux1DpKjqWmCty2FEnKreBdzldhyRkhCdxUPYB0zq97o0vC3eJWK5ErFMkJjlSsQyQeKWa0QSORGsA6aLyBQRSQU+DKxxOaZISMRyJWKZIDHLlYhlgsQt14gkRCIQkQeBV4ATRaRGRK5U1W7gP4C/AtuAVaq6xc04RysRy5WIZYLELFcilgkSt1zHIyGGjxpjjDl2CVEjMMYYc+wsERhjTJKzRGCMMUnOEoExxiQ5SwTGGJPkLBEYY0ySs0RgEoKIBKJ8vYisWSGhtRWaRGSjiGwXke+P4D0Xi8jsSFzfGLBEYMygRGTYebhU9T0RvNzfVHUhsAi4QESONm//xYRmKDUmIiwRmIQlItNE5C8iskFCK5rNDG+/UEReFZHXReSZ8LoGiMitIvIbEXkJ+E349S9FZK2I7BKR6/qdOxD+c1l4/+rwL/rfhqcoRkTOC2/bICJ3iciw6wuoahuwkdBMmIjIZ0RknYhsEpGHRSRTRN4DrAS+F65FTBuqnMaMlCUCk8juBa5V1XcBXwLuDm//O3CKqi4CHgJu6vee2cCZqvqR8OuZhKa8Phn4moj4BrnOIuD68HunAktFJB24Bzg3fP3iowUrImOA6bw1XfgjqnqSqi4gNO3Blar6MqE5cG5U1YWqWjlMOY0ZEZuG2iQkEckG3gP8IfwDHd5axKYU+L2ITABSgap+b10T/mXe5wlV7QA6RKQWGMc7l8f8p6rWhK+7ESgjtALWLlXtO/eDwFVDhHu6iGwilATuVNWD4e1zReQbhNZdyCY0D85oymnMiFgiMInKAzSG294H+hGhJS7XhBdOubXfvuCAYzv6Pe9h8P8zIzlmOH9T1QtEZArwDxFZpaobgfuBi1V1U3ixmmWDvHe4chozItY0ZBKSqjYDVSJyKYSWFhSRBeHdebw11/wnHArhTWBqvyURj7rAebj28B1CC9gD5AAHws1R/ddlbgnvO1o5jRkRSwQmUWSGpxTue3yB0JfnleFmly3AReFjbyXUlLIBqHMimHDz0jXAX8LXaQGaRvDWnwHvDSeQrwKvAi8B2/sd8xBwY7izexpDl9OYEbFpqI1xiIhkq2ogPIroJ8BOVb3D7biMGchqBMY45zPhzuMthJqj7nE3HGMGZzUCY4xJclYjMMaYJGeJwBhjkpwlAmOMSXKWCIwxJslZIjDGmCRnicAYY5Lc/wcltH5GZboWDgAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"dls = dsets.dataloaders(bs=16, after_item=[albu_aug, ToTensor],\n",
" after_batch=[IntToFloatTensor(div_mask=255), \n",
" Normalize.from_stats(*imagenet_stats)])\n",
"img_size = [round(0.9*320) for _ in range(2)]\n",
"\n",
"encoder = timm.create_model('efficientnet_b0', pretrained=True)\n",
"\n",
"# Let's use self attentions and Mish activation function \n",
"model = DynamicTimmUnet(encoder, 3, img_size, self_attention=True, act_cls=Mish)\n",
"\n",
"# We'll also use ranger optimizer with is RAdam with Lookahead\n",
"learn = Learner(dls, model, metrics=metrics, loss_func=loss_func, splitter=dynamic_unet_splitter, opt_func=ranger).to_fp16()\n",
"learn.freeze()\n",
"learn.lr_find()"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"<style>\n",
" /* Turns off some styling */\n",
" progress {\n",
" /* gets rid of default border in Firefox and Opera. */\n",
" border: none;\n",
" /* Needs to be in here for Safari polyfill so background images work as expected. */\n",
" background-size: auto;\n",
" }\n",
" .progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {\n",
" background: #F44336;\n",
" }\n",
"</style>\n"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: left;\">\n",
" <th>epoch</th>\n",
" <th>train_loss</th>\n",
" <th>valid_loss</th>\n",
" <th>dice_coeff_adj</th>\n",
" <th>hd_dist_adj</th>\n",
" <th>custom_metric_adj</th>\n",
" <th>time</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <td>0</td>\n",
" <td>0.991883</td>\n",
" <td>0.699887</td>\n",
" <td>0.562718</td>\n",
" <td>0.762979</td>\n",
" <td>0.682874</td>\n",
" <td>02:08</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Let's also use flat cosine annealing lr shceduler\n",
"lr = 1e-3\n",
"learn.fit_flat_cos(1, lr)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"<style>\n",
" /* Turns off some styling */\n",
" progress {\n",
" /* gets rid of default border in Firefox and Opera. */\n",
" border: none;\n",
" /* Needs to be in here for Safari polyfill so background images work as expected. */\n",
" background-size: auto;\n",
" }\n",
" .progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {\n",
" background: #F44336;\n",
" }\n",
"</style>\n"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: left;\">\n",
" <th>epoch</th>\n",
" <th>train_loss</th>\n",
" <th>valid_loss</th>\n",
" <th>dice_coeff_adj</th>\n",
" <th>hd_dist_adj</th>\n",
" <th>custom_metric_adj</th>\n",
" <th>time</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <td>0</td>\n",
" <td>0.805488</td>\n",
" <td>0.588406</td>\n",
" <td>0.645035</td>\n",
" <td>0.856163</td>\n",
" <td>0.771712</td>\n",
" <td>02:24</td>\n",
" </tr>\n",
" <tr>\n",
" <td>1</td>\n",
" <td>0.660503</td>\n",
" <td>0.477541</td>\n",
" <td>0.698127</td>\n",
" <td>0.851142</td>\n",
" <td>0.789936</td>\n",
" <td>02:23</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Let's unfreeze the encoder layers and train with discriminative learning rates.\n",
"learn.unfreeze()\n",
"learn.fit_flat_cos(2, slice(lr/400, lr/4))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Inference"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [],
"source": [
"def create_df(df, fnames):\n",
" df = df.copy()\n",
" df = df.pivot(index='id', columns='class', values='segmentation').reset_index()\n",
" \n",
" df['partial_fname'] = df.id\n",
" fname_df = pd.DataFrame({'partial_fname': [f'{fname.parts[-3]}_slice_{fname.parts[-1][6:10]}' for fname in fnames],\n",
" 'fname': fnames})\n",
"\n",
" df = df.merge(fname_df, on='partial_fname').drop('partial_fname', axis=1)\n",
"\n",
" df['case_id'] = df.id.apply(lambda x: x.split('_')[0])\n",
" df['day_num'] = df.id.apply(lambda x: x.split('_')[1])\n",
"\n",
" df['slice_w'] = df[\"fname\"].apply(lambda x: int(str(x)[:-4].rsplit(\"_\",4)[1]))\n",
" df['slice_h'] = df[\"fname\"].apply(lambda x: int(str(x)[:-4].rsplit(\"_\",4)[2]))\n",
" \n",
" channels = 3\n",
" stride = 2\n",
" for j, i in enumerate(range(-1*(channels-channels//2-1), channels//2+1)):\n",
" method = 'ffill'\n",
" if i <= 0: method = 'bfill'\n",
" df[f'fname_{j:02}'] = df.groupby(['case_id', 'day_num'])['fname'].shift(stride*-i).fillna(method=method)\n",
"\n",
" df['fnames'] = df[[f'fname_{j:02d}' for j in range(channels)]].values.tolist()\n",
" \n",
" return df\n",
"\n",
"def mask2rle(mask):\n",
" \"\"\"\n",
" img: numpy array, 1 - mask, 0 - background\n",
" Returns run length as string formated\n",
" \"\"\"\n",
" mask = np.array(mask)\n",
" pixels = mask.flatten()\n",
" pad = np.array([0])\n",
" pixels = np.concatenate([pad, pixels, pad])\n",
" runs = np.where(pixels[1:] != pixels[:-1])[0] + 1\n",
" runs[1::2] -= runs[::2]\n",
"\n",
" return \" \".join(str(x) for x in runs)\n",
"\n",
"def resize_img_to_org_size(img, org_size):\n",
" shape0 = np.array(img.shape[:2])\n",
" diff = org_size - shape0\n",
" if np.any(diff < 0):\n",
" img = pad_img_nc(img, (320, 384))\n",
" resized = unpad_img_nc(img, org_size)\n",
" else:\n",
" resized = pad_img_nc(img, org_size)\n",
" return resized\n",
"\n",
"def get_rle_masks(preds, df):\n",
" rle_masks = []\n",
" for pred, width, height in zip(preds, df['slice_w'], df['slice_h']):\n",
" upsized_mask = resize_img_to_org_size(pred, (height, width))\n",
" for i in range(3):\n",
" rle_mask = mask2rle(upsized_mask[:, :, i])\n",
" rle_masks.append(rle_mask)\n",
" return rle_masks\n",
"\n",
"def unpad_img_nc(img, org_size):\n",
" shape0 = np.array(org_size)\n",
" resize = np.array(img.shape[:2])\n",
" if np.any(shape0!=resize):\n",
" diff = resize - shape0\n",
" pad0 = diff[0]\n",
" pad1 = diff[1]\n",
" pady = [pad0//2, pad0//2 + pad0%2]\n",
" padx = [pad1//2, pad1//2 + pad1%2]\n",
" \n",
" if pady[0] != 0:\n",
" img = img[pady[0]:-pady[1], :, :]\n",
" \n",
" if padx[0] != 0:\n",
" img = img[:, padx[0]:-padx[1], :]\n",
" \n",
" img = img.reshape((*shape0, img.shape[-1]))\n",
" return img\n",
"\n",
"def pad_img_nc(img, up_size=None):\n",
" if up_size is None:\n",
" return img\n",
" shape0 = np.array(img.shape[:2])\n",
" resize = np.array(up_size)\n",
" if np.any(shape0!=resize):\n",
" diff = resize - shape0\n",
" pad0 = diff[0]\n",
" pad1 = diff[1]\n",
" pady = [pad0//2, pad0//2 + pad0%2]\n",
" padx = [pad1//2, pad1//2 + pad1%2]\n",
" padz = [0, 0]\n",
" img = np.pad(img, [pady, padx, padz])\n",
" img = img.reshape((*resize, img.shape[-1]))\n",
" return img\n",
"\n",
"def get_rle_masks(preds, df):\n",
" rle_masks = []\n",
" for pred, width, height in zip(preds, df['slice_w'], df['slice_h']):\n",
" upsized_mask = resize_img_to_org_size(pred, (height, width))\n",
" for i in range(3):\n",
" rle_mask = mask2rle(upsized_mask[:, :, i])\n",
" rle_masks.append(rle_mask)\n",
" return rle_masks"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
"data_path = 'dataset/'\n",
"\n",
"train_path = Path(data_path+'train')\n",
"test_path = Path(data_path+'test')\n",
"\n",
"train_fnames = get_image_files(train_path)\n",
"test_fnames = get_image_files(test_path)\n",
"\n",
"sample_submission = pd.read_csv(data_path+'sample_submission.csv')\n",
"\n",
"if sample_submission.shape[0] > 0: \n",
" test = sample_submission.copy()\n",
"else:\n",
" test_fnames = train_fnames\n",
" test_path = train_path\n",
" train = pd.read_csv('dataset/train.csv', low_memory=False)\n",
" test = train.copy()\n",
" test = test.sample(frac=1.0, random_state=42)\n",
"\n",
"test_df = create_df(test, test_fnames)\n"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
"learn = load_learner('test_model.pkl')\n",
"# Sample the test set demonstartion purposes\n",
"test_df = test_df.sample(frac=0.1)\n",
"bs = learn.dls.bs\n",
"test_dl = learn.dls.test_dl(test_df, bs=bs, shuffle=False).to('cuda')"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████████████████████████████████████████████████████████████████████████████| 241/241 [00:50<00:00, 4.81it/s]\n"
]
}
],
"source": [
"from tqdm import tqdm\n",
"import gc\n",
"\n",
"learn.model = learn.model.cuda()\n",
"learn.model.eval()\n",
"masks = []\n",
"\n",
"with torch.no_grad():\n",
" for i, b in enumerate(tqdm(test_dl)):\n",
" b.to('cuda')\n",
" b_preds = (sigmoid(learn.model(b)) > 0.5).permute(0, 2, 3, 1).cpu().detach().numpy().astype(np.uint8)\n",
"\n",
" masks.extend(get_rle_masks(b_preds, test_df.iloc[i*bs:i*bs+bs]))\n",
"\n",
" # test_preds[i*bs:i*bs+bs] = b_preds\n",
" del b_preds\n",
" torch.cuda.empty_cache()\n",
" gc.collect()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Submission"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [],
"source": [
"def get_case_id(fname):\n",
" return fname.parts[3] + '_' + fname.parts[5][:10]"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [],
"source": [
"from itertools import chain\n",
"\n",
"submission = pd.DataFrame({\n",
" 'id': chain.from_iterable([[get_case_id(fname)]*3 for fname in test_df['fname']]),\n",
" 'class': chain.from_iterable([['large_bowel', 'small_bowel', 'stomach'] for _ in test_df['fname']]),\n",
" 'predicted': masks,\n",
" })\n",
" \n",
"\n",
"# Merge with sample submission to preserve order to slices during scoring and avoid 0 scores\n",
"if sample_submission.shape[0] > 0:\n",
" del sample_submission['segmentation']\n",
" submission = sample_submission.merge(submission, on=['id', 'class'])\n",
"\n",
"submission.to_csv('submission.csv', index=False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.11"
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": true,
"sideBar": true,
"skip_h1_title": false,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {},
"toc_section_display": true,
"toc_window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 1
}